1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// Boost.Polygon library voronoi_graphic_utils.hpp header file
// Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_POLYGON_VORONOI_VISUAL_UTILS
#define BOOST_POLYGON_VORONOI_VISUAL_UTILS
#include <stack>
#include <vector>
#include <boost/polygon/isotropy.hpp>
#include <boost/polygon/point_concept.hpp>
#include <boost/polygon/segment_concept.hpp>
#include <boost/polygon/rectangle_concept.hpp>
namespace boost {
namespace polygon {
// Utilities class, that contains set of routines handful for visualization.
template <typename CT>
class voronoi_visual_utils {
public:
// Discretize parabolic Voronoi edge.
// Parabolic Voronoi edges are always formed by one point and one segment
// from the initial input set.
//
// Args:
// point: input point.
// segment: input segment.
// max_dist: maximum discretization distance.
// discretization: point discretization of the given Voronoi edge.
//
// Template arguments:
// InCT: coordinate type of the input geometries (usually integer).
// Point: point type, should model point concept.
// Segment: segment type, should model segment concept.
//
// Important:
// discretization should contain both edge endpoints initially.
template <class InCT1, class InCT2,
template<class> class Point,
template<class> class Segment>
static
typename enable_if<
typename gtl_and<
typename gtl_if<
typename is_point_concept<
typename geometry_concept< Point<InCT1> >::type
>::type
>::type,
typename gtl_if<
typename is_segment_concept<
typename geometry_concept< Segment<InCT2> >::type
>::type
>::type
>::type,
void
>::type discretize(
const Point<InCT1>& point,
const Segment<InCT2>& segment,
const CT max_dist,
std::vector< Point<CT> >* discretization) {
// Apply the linear transformation to move start point of the segment to
// the point with coordinates (0, 0) and the direction of the segment to
// coincide the positive direction of the x-axis.
CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
// Compute x-coordinates of the endpoints of the edge
// in the transformed space.
CT projection_start = sqr_segment_length *
get_point_projection((*discretization)[0], segment);
CT projection_end = sqr_segment_length *
get_point_projection((*discretization)[1], segment);
// Compute parabola parameters in the transformed space.
// Parabola has next representation:
// f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
// Save the last point.
Point<CT> last_point = (*discretization)[1];
discretization->pop_back();
// Use stack to avoid recursion.
std::stack<CT> point_stack;
point_stack.push(projection_end);
CT cur_x = projection_start;
CT cur_y = parabola_y(cur_x, rot_x, rot_y);
// Adjust max_dist parameter in the transformed space.
const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
while (!point_stack.empty()) {
CT new_x = point_stack.top();
CT new_y = parabola_y(new_x, rot_x, rot_y);
// Compute coordinates of the point of the parabola that is
// furthest from the current line segment.
CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
CT mid_y = parabola_y(mid_x, rot_x, rot_y);
// Compute maximum distance between the given parabolic arc
// and line segment that discretize it.
CT dist = (new_y - cur_y) * (mid_x - cur_x) -
(new_x - cur_x) * (mid_y - cur_y);
dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
(new_x - cur_x) * (new_x - cur_x));
if (dist <= max_dist_transformed) {
// Distance between parabola and line segment is less than max_dist.
point_stack.pop();
CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
sqr_segment_length + cast(x(low(segment)));
CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
sqr_segment_length + cast(y(low(segment)));
discretization->push_back(Point<CT>(inter_x, inter_y));
cur_x = new_x;
cur_y = new_y;
} else {
point_stack.push(mid_x);
}
}
// Update last point.
discretization->back() = last_point;
}
private:
// Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
static CT parabola_y(CT x, CT a, CT b) {
return ((x - a) * (x - a) + b * b) / (b + b);
}
// Get normalized length of the distance between:
// 1) point projection onto the segment
// 2) start point of the segment
// Return this length divided by the segment length. This is made to avoid
// sqrt computation during transformation from the initial space to the
// transformed one and vice versa. The assumption is made that projection of
// the point lies between the start-point and endpoint of the segment.
template <class InCT,
template<class> class Point,
template<class> class Segment>
static
typename enable_if<
typename gtl_and<
typename gtl_if<
typename is_point_concept<
typename geometry_concept< Point<int> >::type
>::type
>::type,
typename gtl_if<
typename is_segment_concept<
typename geometry_concept< Segment<long> >::type
>::type
>::type
>::type,
CT
>::type get_point_projection(
const Point<CT>& point, const Segment<InCT>& segment) {
CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
CT point_vec_x = x(point) - cast(x(low(segment)));
CT point_vec_y = y(point) - cast(y(low(segment)));
CT sqr_segment_length =
segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
return vec_dot / sqr_segment_length;
}
template <typename InCT>
static CT cast(const InCT& value) {
return static_cast<CT>(value);
}
};
}
}
#endif // BOOST_POLYGON_VORONOI_VISUAL_UTILS
|