1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
//[ Calc3
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This example enhances the arithmetic expression evaluator
// in calc2.cpp by using a proto transform to calculate the
// number of arguments an expression requires and using a
// compile-time assert to guarantee that the right number of
// arguments are actually specified.
#include <iostream>
#include <boost/mpl/int.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/mpl/min_max.hpp>
#include <boost/proto/core.hpp>
#include <boost/proto/context.hpp>
#include <boost/proto/transform.hpp>
namespace mpl = boost::mpl;
namespace proto = boost::proto;
using proto::_;
// Will be used to define the placeholders _1 and _2
template<typename I> struct placeholder : I {};
// This grammar basically says that a calculator expression is one of:
// - A placeholder terminal
// - Some other terminal
// - Some non-terminal whose children are calculator expressions
// In addition, it has transforms that say how to calculate the
// expression arity for each of the three cases.
struct CalculatorGrammar
: proto::or_<
// placeholders have a non-zero arity ...
proto::when< proto::terminal< placeholder<_> >, proto::_value >
// Any other terminals have arity 0 ...
, proto::when< proto::terminal<_>, mpl::int_<0>() >
// For any non-terminals, find the arity of the children and
// take the maximum. This is recursive.
, proto::when< proto::nary_expr<_, proto::vararg<_> >
, proto::fold<_, mpl::int_<0>(), mpl::max<CalculatorGrammar, proto::_state>() > >
>
{};
// Simple wrapper for calculating a calculator expression's arity.
// It specifies mpl::int_<0> as the initial state. The data, which
// is not used, is mpl::void_.
template<typename Expr>
struct calculator_arity
: boost::result_of<CalculatorGrammar(Expr)>
{};
template<typename Expr>
struct calculator_expression;
// Tell proto how to generate expressions in the calculator_domain
struct calculator_domain
: proto::domain<proto::generator<calculator_expression> >
{};
// Define a calculator context, for evaluating arithmetic expressions
// (This is as before, in calc1.cpp and calc2.cpp)
struct calculator_context
: proto::callable_context< calculator_context const >
{
// The values bound to the placeholders
double d[2];
// The result of evaluating arithmetic expressions
typedef double result_type;
explicit calculator_context(double d1 = 0., double d2 = 0.)
{
d[0] = d1;
d[1] = d2;
}
// Handle the evaluation of the placeholder terminals
template<typename I>
double operator ()(proto::tag::terminal, placeholder<I>) const
{
return d[ I() - 1 ];
}
};
// Wrap all calculator expressions in this type, which defines
// operator () to evaluate the expression.
template<typename Expr>
struct calculator_expression
: proto::extends<Expr, calculator_expression<Expr>, calculator_domain>
{
typedef
proto::extends<Expr, calculator_expression<Expr>, calculator_domain>
base_type;
explicit calculator_expression(Expr const &expr = Expr())
: base_type(expr)
{}
BOOST_PROTO_EXTENDS_USING_ASSIGN(calculator_expression<Expr>)
// Override operator () to evaluate the expression
double operator ()() const
{
// Assert that the expression has arity 0
BOOST_MPL_ASSERT_RELATION(0, ==, calculator_arity<Expr>::type::value);
calculator_context const ctx;
return proto::eval(*this, ctx);
}
double operator ()(double d1) const
{
// Assert that the expression has arity 1
BOOST_MPL_ASSERT_RELATION(1, ==, calculator_arity<Expr>::type::value);
calculator_context const ctx(d1);
return proto::eval(*this, ctx);
}
double operator ()(double d1, double d2) const
{
// Assert that the expression has arity 2
BOOST_MPL_ASSERT_RELATION(2, ==, calculator_arity<Expr>::type::value);
calculator_context const ctx(d1, d2);
return proto::eval(*this, ctx);
}
};
// Define some placeholders (notice they're wrapped in calculator_expression<>)
calculator_expression<proto::terminal< placeholder< mpl::int_<1> > >::type> const _1;
calculator_expression<proto::terminal< placeholder< mpl::int_<2> > >::type> const _2;
// Now, our arithmetic expressions are immediately executable function objects:
int main()
{
// Displays "5"
std::cout << (_1 + 2.0)( 3.0 ) << std::endl;
// Displays "6"
std::cout << ( _1 * _2 )( 3.0, 2.0 ) << std::endl;
// Displays "0.5"
std::cout << ( (_1 - _2) / _2 )( 3.0, 2.0 ) << std::endl;
// This won't compile because the arity of the
// expression doesn't match the number of arguments
// ( (_1 - _2) / _2 )( 3.0 );
return 0;
}
//]
|