1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
///////////////////////////////////////////////////////////////////////////////
// lambda.hpp
//
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <sstream>
#include <boost/mpl/int.hpp>
#include <boost/mpl/min_max.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/next_prior.hpp>
#include <boost/fusion/tuple.hpp>
#include <boost/typeof/typeof.hpp>
#include <boost/typeof/std/sstream.hpp>
#include <boost/typeof/std/ostream.hpp>
#include <boost/typeof/std/iostream.hpp>
#include <boost/type_traits/add_const.hpp>
#include <boost/type_traits/add_reference.hpp>
#include <boost/proto/core.hpp>
#include <boost/proto/context.hpp>
#include <boost/proto/transform.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
using namespace boost;
// Forward declaration of the lambda expression wrapper
template<typename T>
struct lambda;
struct lambda_domain
: proto::domain<proto::pod_generator<lambda> >
{};
template<typename I>
struct placeholder
{
typedef I arity;
};
template<typename T>
struct placeholder_arity
{
typedef typename T::arity type;
};
namespace grammar
{
using namespace proto;
// The lambda grammar, with the transforms for calculating the max arity
struct Lambda
: or_<
when< terminal< placeholder<_> >, mpl::next<placeholder_arity<_value> >() >
, when< terminal<_>, mpl::int_<0>() >
, when< nary_expr<_, vararg<_> >, fold<_, mpl::int_<0>(), mpl::max<Lambda,_state>()> >
>
{};
}
// simple wrapper for calculating a lambda expression's arity.
template<typename Expr>
struct lambda_arity
: boost::result_of<grammar::Lambda(Expr, mpl::void_, mpl::void_)>
{};
// The lambda context is the same as the default context
// with the addition of special handling for lambda placeholders
template<typename Tuple>
struct lambda_context
: proto::callable_context<lambda_context<Tuple> const>
{
lambda_context(Tuple const &args)
: args_(args)
{}
template<typename Sig>
struct result;
template<typename This, typename I>
struct result<This(proto::tag::terminal, placeholder<I> const &)>
: fusion::result_of::at<Tuple, I>
{};
template<typename I>
typename fusion::result_of::at<Tuple, I>::type
operator ()(proto::tag::terminal, placeholder<I> const &) const
{
return fusion::at<I>(this->args_);
}
Tuple args_;
};
// The lambda<> expression wrapper makes expressions polymorphic
// function objects
template<typename T>
struct lambda
{
BOOST_PROTO_BASIC_EXTENDS(T, lambda<T>, lambda_domain)
BOOST_PROTO_EXTENDS_ASSIGN()
BOOST_PROTO_EXTENDS_SUBSCRIPT()
// Careful not to evaluate the return type of the nullary function
// unless we have a nullary lambda!
typedef typename mpl::eval_if<
typename lambda_arity<T>::type
, mpl::identity<void>
, proto::result_of::eval<T const, lambda_context<fusion::tuple<> > >
>::type nullary_type;
// Define our operator () that evaluates the lambda expression.
nullary_type operator ()() const
{
fusion::tuple<> args;
lambda_context<fusion::tuple<> > ctx(args);
return proto::eval(*this, ctx);
}
#define M0(N, typename_A, A_const_ref, A_const_ref_a, ref_a) \
template<typename_A(N)> \
typename proto::result_of::eval<T const, lambda_context<fusion::tuple<A_const_ref(N)> > >::type \
operator ()(A_const_ref_a(N)) const \
{ \
fusion::tuple<A_const_ref(N)> args(ref_a(N)); \
lambda_context<fusion::tuple<A_const_ref(N)> > ctx(args); \
return proto::eval(*this, ctx); \
} \
/**/
BOOST_PROTO_REPEAT_FROM_TO(1, 4, M0)
#undef M0
};
// Define some lambda placeholders
lambda<proto::terminal<placeholder<mpl::int_<0> > >::type> const _1 = {{}};
lambda<proto::terminal<placeholder<mpl::int_<1> > >::type> const _2 = {{}};
lambda<proto::terminal<placeholder<mpl::int_<3> > >::type> const _3 = {{}};
template<typename T>
lambda<typename proto::terminal<T>::type> const val(T const &t)
{
lambda<typename proto::terminal<T>::type> that = {{t}};
return that;
}
template<typename T>
lambda<typename proto::terminal<T &>::type> const var(T &t)
{
lambda<typename proto::terminal<T &>::type> that = {{t}};
return that;
}
void test_lambda()
{
BOOST_CHECK_EQUAL(11, ( (_1 + 2) / 4 )(42));
BOOST_CHECK_EQUAL(-11, ( (-(_1 + 2)) / 4 )(42));
BOOST_CHECK_CLOSE(2.58, ( (4 - _2) * 3 )(42, 3.14), 0.1);
// check non-const ref terminals
std::stringstream sout;
(sout << _1 << " -- " << _2)(42, "Life, the Universe and Everything!");
BOOST_CHECK_EQUAL("42 -- Life, the Universe and Everything!", sout.str());
// check nullary lambdas
BOOST_CHECK_EQUAL(3, (val(1) + val(2))());
// check array indexing for kicks
int integers[5] = {0};
(var(integers)[2] = 2)();
(var(integers)[_1] = _1)(3);
BOOST_CHECK_EQUAL(2, integers[2]);
BOOST_CHECK_EQUAL(3, integers[3]);
}
using namespace unit_test;
///////////////////////////////////////////////////////////////////////////////
// init_unit_test_suite
//
test_suite* init_unit_test_suite( int argc, char* argv[] )
{
test_suite *test = BOOST_TEST_SUITE("test expression template domains");
test->add(BOOST_TEST_CASE(&test_lambda));
return test;
}
|