1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
/*
* Copyright Matt Borland 2025.
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* This file copies and pastes the original code for comparison under the following license
*
* Written in 2019 by David Blackman and Sebastiano Vigna (vigna@acm.org)
*
* To the extent possible under law, the author has dedicated all copyright
* and related and neighboring rights to this software to the public domain
* worldwide.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
* IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <boost/random/xoshiro.hpp>
#include <boost/random/splitmix64.hpp>
#include <boost/core/lightweight_test.hpp>
#include <limits>
#include <cstdint>
#include <cmath>
using std::uint64_t;
/* This is xoshiro512+ 1.0, our generator for floating-point numbers with
increased state size. We suggest to use its upper bits for
floating-point generation, as it is slightly faster than xoshiro512**.
It passes all tests we are aware of except for the lowest three bits,
which might fail linearity tests (and just those), so if low linear
complexity is not considered an issue (as it is usually the case) it
can be used to generate 64-bit outputs, too.
We suggest to use a sign test to extract a random Boolean value, and
right shifts to extract subsets of bits.
The state must be seeded so that it is not everywhere zero. If you have
a 64-bit seed, we suggest to seed a splitmix64 generator and use its
output to fill s. */
static inline uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
static uint64_t s[8];
uint64_t next(void) {
const uint64_t result = s[0] + s[2];
const uint64_t t = s[1] << 11;
s[2] ^= s[0];
s[5] ^= s[1];
s[1] ^= s[2];
s[7] ^= s[3];
s[3] ^= s[4];
s[4] ^= s[5];
s[0] ^= s[6];
s[6] ^= s[7];
s[6] ^= t;
s[7] = rotl(s[7], 21);
return result;
}
/* This is the jump function for the generator. It is equivalent
to 2^256 calls to next(); it can be used to generate 2^256
non-overlapping subsequences for parallel computations. */
void jump(void) {
static const uint64_t JUMP[] = { 0x33ed89b6e7a353f9, 0x760083d7955323be, 0x2837f2fbb5f22fae, 0x4b8c5674d309511c, 0xb11ac47a7ba28c25, 0xf1be7667092bcc1c, 0x53851efdb6df0aaf, 0x1ebbc8b23eaf25db };
uint64_t t[sizeof s / sizeof *s];
memset(t, 0, sizeof t);
for(std::size_t i = 0; i < sizeof JUMP / sizeof *JUMP; i++)
for(int b = 0; b < 64; b++) {
if (JUMP[i] & UINT64_C(1) << b)
for(std::size_t w = 0; w < sizeof s / sizeof *s; w++)
t[w] ^= s[w];
next();
}
memcpy(s, t, sizeof s);
}
/* This is the long-jump function for the generator. It is equivalent to
2^384 calls to next(); it can be used to generate 2^128 starting points,
from each of which jump() will generate 2^128 non-overlapping
subsequences for parallel distributed computations. */
void long_jump(void) {
static const uint64_t LONG_JUMP[] = { 0x11467fef8f921d28, 0xa2a819f2e79c8ea8, 0xa8299fc284b3959a, 0xb4d347340ca63ee1, 0x1cb0940bedbff6ce, 0xd956c5c4fa1f8e17, 0x915e38fd4eda93bc, 0x5b3ccdfa5d7daca5 };
uint64_t t[sizeof s / sizeof *s];
memset(t, 0, sizeof t);
for(std::size_t i = 0; i < sizeof LONG_JUMP / sizeof *LONG_JUMP; i++)
for(int b = 0; b < 64; b++) {
if (LONG_JUMP[i] & UINT64_C(1) << b)
for(std::size_t w = 0; w < sizeof s / sizeof *s; w++)
t[w] ^= s[w];
next();
}
memcpy(s, t, sizeof s);
}
void test_no_seed()
{
// Default initialized to contain splitmix64 values
boost::random::xoshiro512d boost_rng;
for (int i {}; i < 10000; ++i)
{
boost_rng();
}
boost::random::splitmix64 gen;
for (auto& i : s)
{
i = gen();
}
for (int i {}; i < 10000; ++i)
{
next();
}
const auto final_state = boost_rng.state();
for (std::size_t i {}; i < final_state.size(); ++i)
{
BOOST_TEST_EQ(final_state[i], s[i]);
}
}
void test_basic_seed()
{
// Default initialized to contain splitmix64 values
boost::random::xoshiro512d boost_rng(42ULL);
for (int i {}; i < 10000; ++i)
{
boost_rng();
}
boost::random::splitmix64 gen(42ULL);
for (auto& i : s)
{
i = gen();
}
for (int i {}; i < 10000; ++i)
{
next();
}
const auto final_state = boost_rng.state();
for (std::size_t i {}; i < final_state.size(); ++i)
{
BOOST_TEST_EQ(final_state[i], s[i]);
}
}
void test_jump()
{
// Default initialized to contain splitmix64 values
boost::random::xoshiro512d boost_rng;
for (int i {}; i < 10000; ++i)
{
boost_rng();
}
boost::random::splitmix64 gen;
for (auto& i : s)
{
i = gen();
}
for (int i {}; i < 10000; ++i)
{
next();
}
boost_rng.jump();
jump();
const auto final_state = boost_rng.state();
for (std::size_t i {}; i < final_state.size(); ++i)
{
BOOST_TEST_EQ(final_state[i], s[i]);
}
}
void test_long_jump()
{
// Default initialized to contain splitmix64 values
boost::random::xoshiro512d boost_rng;
for (int i {}; i < 10000; ++i)
{
boost_rng();
}
boost::random::splitmix64 gen;
for (auto& i : s)
{
i = gen();
}
for (int i {}; i < 10000; ++i)
{
next();
}
boost_rng.long_jump();
long_jump();
const auto final_state = boost_rng.state();
for (std::size_t i {}; i < final_state.size(); ++i)
{
BOOST_TEST_EQ(final_state[i], s[i]);
}
}
#if !defined(_MSVC_LANG) || _MSVC_LANG >= 202002L
static inline double to_double(uint64_t x) {
const union { uint64_t i; double d; } u = { .i = UINT64_C(0x3FF) << 52 | x >> 12 };
return u.d - 1.0;
}
void test_double()
{
// Default initialized to contain splitmix64 values
boost::random::xoshiro512d boost_rng;
for (int i {}; i < 10000; ++i)
{
boost_rng();
}
boost::random::splitmix64 gen;
for (auto& i : s)
{
i = gen();
}
for (int i {}; i < 10000; ++i)
{
next();
}
const auto final_state = boost_rng.state();
for (std::size_t i {}; i < final_state.size(); ++i)
{
BOOST_TEST_EQ(final_state[i], s[i]);
}
const auto boost_double = boost_rng();
const auto ref_double = to_double(next());
BOOST_TEST(std::fabs(boost_double - ref_double) < std::numeric_limits<double>::epsilon());
}
#endif
int main()
{
test_no_seed();
test_basic_seed();
test_jump();
test_long_jump();
#if !defined(_MSVC_LANG) || _MSVC_LANG >= 202002L
test_double();
#endif
return boost::report_errors();
}
|