File: extending.qbk

package info (click to toggle)
boost1.90 1.90.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 593,120 kB
  • sloc: cpp: 4,190,908; xml: 196,648; python: 34,618; ansic: 23,145; asm: 5,468; sh: 3,774; makefile: 1,161; perl: 1,020; sql: 728; ruby: 676; yacc: 478; java: 77; lisp: 24; csh: 6
file content (328 lines) | stat: -rw-r--r-- 9,803 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
[/
    Copyright 2010 Neil Groves
    Distributed under the Boost Software License, Version 1.0.
    (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
/]
[section:extending Extending the library]

[section:method_1 Method 1: provide member functions and nested types]

This procedure assumes that you have control over the types that should be made conformant to a Range concept. If not, see [link range.reference.extending.method_2 method 2].

The primary templates in this library are implemented such that standard containers will work automatically and so will __boost_array__. Below is given an overview of which member functions and member types a class must specify to be useable as a certain Range concept.

[table
  [[Member function] [Related concept      ]]
  [[`begin()`      ] [__single_pass_range__]]
  [[`end()`        ] [__single_pass_range__]]
]

Notice that `rbegin()` and `rend()` member functions are not needed even though the container can support bidirectional iteration.

The required member types are:

[table
  [[Member type     ] [Related concept      ]]
  [[`iterator`      ] [__single_pass_range__]]
  [[`const_iterator`] [__single_pass_range__]]
]

Again one should notice that member types `reverse_iterator` and `const_reverse_iterator` are not needed.

[endsect]

[section:method_2 Method 2: provide free-standing functions and specialize metafunctions]

This procedure assumes that you cannot (or do not wish to) change the types that should be made conformant to a Range concept. If this is not true, see [link range.reference.extending.method_1 method 1].

The primary templates in this library are implemented such that certain functions are found via argument-dependent-lookup (ADL). Below is given an overview of which free-standing functions a class must specify to be useable as a certain Range concept. Let `x` be a variable (`const` or `mutable`) of the class in question.

[table
  [[Function              ] [Related concept      ]]
  [[`range_begin(x)`] [__single_pass_range__]]
  [[`range_end(x)`  ] [__single_pass_range__]]
  [[`range_calculate_size(x)`] [ Optional. This can be used to specify a mechanism for constant-time computation of the size of a range. The default behaviour is to return `boost::end(x) - boost::begin(x)` for random access ranges, and to return `x.size()` for ranges with lesser traversal capability. This behaviour can be changed by implementing `range_calculate_size` in a manner that will be found via ADL. The ability to calculate size in O(1) is often possible even with ranges with traversal categories less than random access.]]
]

`range_begin()` and `range_end()` must be overloaded for both `const` and `mutable` reference arguments.

You must also specialize two metafunctions for your type `X`:

[table
  [[Metafunction                 ] [Related concept      ]]
  [[`boost::range_mutable_iterator`] [__single_pass_range__]]
  [[`boost::range_const_iterator`] [__single_pass_range__]]
]

A complete example is given here:

``
    #include <boost/range.hpp>
    #include <iterator>         // for std::iterator_traits, std::distance()

    namespace Foo
    {
        //
        // Our sample UDT. A 'Pair'
        // will work as a range when the stored
        // elements are iterators.
        //
        template< class T >
        struct Pair
        {
            T first, last;
        };

    } // namespace 'Foo'

    namespace boost
    {
        //
        // Specialize metafunctions. We must include the range.hpp header.
        // We must open the 'boost' namespace.
        //

    	template< class T >
    	struct range_mutable_iterator< Foo::Pair<T> >
    	{
    		typedef T type;
    	};

    	template< class T >
    	struct range_const_iterator< Foo::Pair<T> >
    	{
    		//
    		// Remark: this is defined similar to 'range_iterator'
    		//         because the 'Pair' type does not distinguish
    		//         between an iterator and a const_iterator.
    		//
    		typedef T type;
    	};

    } // namespace 'boost'

    namespace Foo
    {
    	//
    	// The required functions. These should be defined in
    	// the same namespace as 'Pair', in this case
    	// in namespace 'Foo'.
    	//

    	template< class T >
    	inline T range_begin( Pair<T>& x )
    	{
    		return x.first;
    	}

    	template< class T >
    	inline T range_begin( const Pair<T>& x )
    	{
    		return x.first;
    	}

    	template< class T >
    	inline T range_end( Pair<T>& x )
    	{
    		return x.last;
    	}

    	template< class T >
    	inline T range_end( const Pair<T>& x )
    	{
    		return x.last;
    	}

    } // namespace 'Foo'

    #include <vector>

    int main(int argc, const char* argv[])
    {
    	typedef std::vector<int>::iterator  iter;
    	std::vector<int>                    vec;
    	Foo::Pair<iter>                     pair = { vec.begin(), vec.end() };
    	const Foo::Pair<iter>&              cpair = pair;
    	//
    	// Notice that we call 'begin' etc with qualification.
    	//
    	iter i = boost::begin( pair );
    	iter e = boost::end( pair );
    	i      = boost::begin( cpair );
    	e      = boost::end( cpair );
    	boost::range_difference< Foo::Pair<iter> >::type s = boost::size( pair );
    	s      = boost::size( cpair );
    	boost::range_reverse_iterator< const Foo::Pair<iter> >::type
    	ri     = boost::rbegin( cpair ),
    	re     = boost::rend( cpair );

    	return 0;
    }
``

[endsect]

[section:method_3 Method 3: provide range adaptor implementations]

[section:method_3_1 Method 3.1: Implement a Range Adaptor without arguments]

To implement a Range Adaptor without arguments (e.g. reversed) you need to:

# Provide a range for your return type, for example:
``
#include <boost/range/iterator_range.hpp>
#include <boost/iterator/reverse_iterator.hpp>

template< typename R >
struct reverse_range :
    boost::iterator_range<
        boost::reverse_iterator<
            typename boost::range_iterator<R>::type> >
{
private:
    typedef boost::iterator_range<
        boost::reverse_iterator<
            typename boost::range_iterator<R>::type> > base;

public:
    typedef boost::reverse_iterator<
        typename boost::range_iterator<R>::type > iterator;

    reverse_range(R& r)
        : base(iterator(boost::end(r)), iterator(boost::begin(r)))
    { }
};
``

# Provide a tag to uniquely identify your adaptor in the `operator|` function overload set
``
namespace detail {
    struct reverse_forwarder {};
}
``

# Implement `operator|`
``
template< class BidirectionalRng >
inline reverse_range<BidirectionalRng>
operator|( BidirectionalRng& r, detail::reverse_forwarder )
{
	return reverse_range<BidirectionalRng>( r );
}

template< class BidirectionalRng >
inline reverse_range<const BidirectionalRng>
operator|( const BidirectionalRng& r, detail::reverse_forwarder )
{
	return reverse_range<const BidirectionalRng>( r );
}
``

# Declare the adaptor itself (it is a variable of the tag type).
``
namespace
{
    const detail::reverse_forwarder reversed = detail::reverse_forwarder();
}
``

[endsect]

[section:method_3_2 Method 3.2: Implement a Range Adaptor with arguments]

# Provide a range for your return type, for example:
``
#include <boost/range/adaptor/argument_fwd.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/iterator/transform_iterator.hpp>

template<typename Value>
class replace_value
{
public:
    typedef const Value& result_type;
    typedef const Value& argument_type;

    replace_value(const Value& from, const Value& to)
        : m_from(from), m_to(to)
    {
    }

    const Value& operator()(const Value& x) const
    {
        return (x == m_from) ? m_to : x;
    }
private:
    Value m_from;
    Value m_to;
};

template<typename Range>
class replace_range
: public boost::iterator_range<
    boost::transform_iterator<
        replace_value<typename boost::range_value<Range>::type>,
        typename boost::range_iterator<Range>::type> >
{
private:
    typedef typename boost::range_value<Range>::type value_type;
    typedef typename boost::range_iterator<Range>::type iterator_base;
    typedef replace_value<value_type> Fn;
    typedef boost::transform_iterator<Fn, iterator_base> replaced_iterator;
    typedef boost::iterator_range<replaced_iterator> base_t;

public:
    replace_range(Range& rng, value_type from, value_type to)
        : base_t(replaced_iterator(boost::begin(rng), Fn(from,to)),
                 replaced_iterator(boost::end(rng), Fn(from,to)))
     {
     }
 };
``

# Implement a holder class to hold the arguments required to construct the RangeAdaptor.
The holder combines multiple parameters into one that can be passed as the right operand of `operator|()`.
``
template<typename T>
class replace_holder : public boost::range_detail::holder2<T>
{
public:
    replace_holder(const T& from, const T& to)
        : boost::range_detail::holder2<T>(from, to)
    { }
private:
    void operator=(const replace_holder&);
};
``

# Define an instance of the holder with the name of the adaptor
``
static boost::range_detail::forwarder2<replace_holder>
replaced = boost::range_detail::forwarder2<replace_holder>();
``

# Define `operator|`
``
template<typename SinglePassRange>
inline replace_range<SinglePassRange>
operator|(SinglePassRange& rng,
          const replace_holder<typename boost::range_value<SinglePassRange>::type>& f)
{
    return replace_range<SinglePassRange>(rng, f.val1, f.val2);
}

template<typename SinglePassRange>
inline replace_range<const SinglePassRange>
operator|(const SinglePassRange& rng,
          const replace_holder<typename boost::range_value<SinglePassRange>::type>& f)
{
    return replace_range<const SinglePassRange>(rng, f.val1, f.val2);
}
``

[endsect]

[endsect]

[endsect]