1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "./containers.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#if defined(BOOST_MSVC)
#pragma warning(disable : 4512) // assignment operator could not be generated
#endif
#if defined(__clang__) && defined(__has_warning)
#if __has_warning("-Wself-assign-overloaded")
#pragma clang diagnostic ignored "-Wself-assign-overloaded"
#endif
#endif
test::seed_t initialize_seed(12847);
template <class T> struct self_assign_base : public test::exception_base
{
test::random_values<T> values;
self_assign_base(std::size_t count = 0) : values(count, test::limited_range)
{
}
typedef T data_type;
T init() const { return T(values.begin(), values.end()); }
void run(T& x) const
{
x = x;
DISABLE_EXCEPTIONS;
test::check_container(x, values);
test::check_equivalent_keys(x);
}
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x) const
{
test::check_equivalent_keys(x);
}
};
template <class T> struct self_assign_test1 : self_assign_base<T>
{
};
template <class T> struct self_assign_test2 : self_assign_base<T>
{
self_assign_test2() : self_assign_base<T>(100) {}
};
template <class T> struct assign_base : public test::exception_base
{
test::random_values<T> x_values, y_values;
T x, y;
int t1;
int t2;
typedef typename T::hasher hasher;
typedef typename T::key_equal key_equal;
typedef typename T::allocator_type allocator_type;
assign_base(int tag1, int tag2, float mlf1 = 1.0, float mlf2 = 1.0)
: x_values(), y_values(),
x(0, hasher(tag1), key_equal(tag1), allocator_type(tag1)),
y(0, hasher(tag2), key_equal(tag2), allocator_type(tag2)),
t1(tag1),
t2(tag2)
{
x.max_load_factor(mlf1);
y.max_load_factor(mlf2);
}
typedef T data_type;
T init() const { return T(x); }
void run(T& x1) const
{
x1 = y;
DISABLE_EXCEPTIONS;
test::check_container(x1, y_values);
test::check_equivalent_keys(x1);
}
void check BOOST_PREVENT_MACRO_SUBSTITUTION(T const& x1) const
{
test::check_equivalent_keys(x1);
if (x1.hash_function() == hasher(t1)) {
BOOST_TEST(x1.key_eq() == key_equal(t1));
}
if (x1.hash_function() == hasher(t2)) {
BOOST_TEST(x1.key_eq() == key_equal(t2));
}
if (x1.key_eq() == key_equal(t1)) {
BOOST_TEST(x1.hash_function() == hasher(t1));
}
if (x1.key_eq() == key_equal(t2)) {
BOOST_TEST(x1.hash_function() == hasher(t2));
}
// If the container is empty at the point of the exception, the
// internal structure is hidden, this exposes it, at the cost of
// messing up the data.
if (x_values.size()) {
T& x2 = const_cast<T&>(x1);
x2.emplace(*x_values.begin());
test::check_equivalent_keys(x2);
}
}
};
template <class T> struct assign_values : assign_base<T>
{
assign_values(unsigned int count1, unsigned int count2, int tag1, int tag2,
test::random_generator gen = test::default_generator, float mlf1 = 1.0,
float mlf2 = 1.0)
: assign_base<T>(tag1, tag2, mlf1, mlf2)
{
this->x_values.fill(count1, gen);
this->y_values.fill(count2, gen);
this->x.insert(this->x_values.begin(), this->x_values.end());
this->y.insert(this->y_values.begin(), this->y_values.end());
}
};
template <class T> struct assign_test1 : assign_values<T>
{
assign_test1() : assign_values<T>(0, 0, 0, 0) {}
};
template <class T> struct assign_test2 : assign_values<T>
{
assign_test2() : assign_values<T>(60, 0, 0, 0) {}
};
template <class T> struct assign_test2a : assign_values<T>
{
assign_test2a() : assign_values<T>(60, 0, 0, 0, test::limited_range) {}
};
template <class T> struct assign_test3 : assign_values<T>
{
assign_test3() : assign_values<T>(0, 60, 0, 0) {}
};
template <class T> struct assign_test3a : assign_values<T>
{
assign_test3a() : assign_values<T>(0, 60, 0, 0, test::limited_range) {}
};
template <class T> struct assign_test4 : assign_values<T>
{
assign_test4() : assign_values<T>(10, 10, 1, 2) {}
};
template <class T> struct assign_test4a : assign_values<T>
{
assign_test4a() : assign_values<T>(10, 100, 1, 2) {}
};
template <class T> struct assign_test4b : assign_values<T>
{
assign_test4b() : assign_values<T>(10, 100, 1, 2, test::limited_range) {}
};
template <class T> struct assign_test5 : assign_values<T>
{
assign_test5()
: assign_values<T>(5, 60, 0, 0, test::default_generator, 1.0f, 0.1f)
{
}
};
template <class T> struct equivalent_test1 : assign_base<T>
{
equivalent_test1() : assign_base<T>(0, 0)
{
test::random_values<T> x_values2(10);
this->x_values.insert(x_values2.begin(), x_values2.end());
this->x_values.insert(x_values2.begin(), x_values2.end());
test::random_values<T> y_values2(10);
this->y_values.insert(y_values2.begin(), y_values2.end());
this->y_values.insert(y_values2.begin(), y_values2.end());
this->x.insert(this->x_values.begin(), this->x_values.end());
this->y.insert(this->y_values.begin(), this->y_values.end());
}
};
// clang-format off
EXCEPTION_TESTS_REPEAT(5,
(self_assign_test1)(self_assign_test2)
(assign_test1)(assign_test2)(assign_test2a)
(assign_test3)(assign_test3a)
(assign_test4)(assign_test4a)(assign_test4b)
(assign_test5)
(equivalent_test1),
CONTAINER_SEQ)
// clang-format on
RUN_TESTS()
|