1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// Copyright (C) 2016-2018 T. Zachary Laine
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//[ mixed
#include <boost/yap/yap.hpp>
#include <complex>
#include <list>
#include <vector>
#include <iostream>
// This wrapper makes the pattern matching in transforms below (like deref and
// incr) a lot easier to write.
template <typename Iter>
struct iter_wrapper
{
Iter it;
};
template <typename Iter>
auto make_iter_wrapper (Iter it)
{ return iter_wrapper<Iter>{it}; }
// A container -> wrapped-begin transform.
struct begin
{
template <typename Cont>
auto operator() (boost::yap::expr_tag<boost::yap::expr_kind::terminal>,
Cont const & cont)
-> decltype(boost::yap::make_terminal(make_iter_wrapper(cont.begin())))
{ return boost::yap::make_terminal(make_iter_wrapper(cont.begin())); }
};
// A wrapped-iterator -> dereferenced value transform.
struct deref
{
template <typename Iter>
auto operator() (boost::yap::expr_tag<boost::yap::expr_kind::terminal>,
iter_wrapper<Iter> wrapper)
-> decltype(boost::yap::make_terminal(*wrapper.it))
{ return boost::yap::make_terminal(*wrapper.it); }
};
// A wrapped-iterator increment transform, using side effects.
struct incr
{
template <typename Iter>
auto operator() (boost::yap::expr_tag<boost::yap::expr_kind::terminal>,
iter_wrapper<Iter> & wrapper)
-> decltype(boost::yap::make_terminal(wrapper.it))
{
++wrapper.it;
// Since this transform is valuable for its side effects, and thus the
// result of the transform is ignored, we could return anything here.
return boost::yap::make_terminal(wrapper.it);
}
};
// The implementation of elementwise evaluation of expressions of sequences;
// all the later operations use this one.
template <
template <class, class> class Cont,
typename T,
typename A,
typename Expr,
typename Op
>
Cont<T, A> & op_assign (Cont<T, A> & cont, Expr const & e, Op && op)
{
decltype(auto) expr = boost::yap::as_expr(e);
// Transform the expression of sequences into an expression of
// begin-iterators.
auto expr2 = boost::yap::transform(boost::yap::as_expr(expr), begin{});
for (auto && x : cont) {
// Transform the expression of iterators into an expression of
// pointed-to-values, evaluate the resulting expression, and call op()
// with the result of the evaluation.
op(x, boost::yap::evaluate(boost::yap::transform(expr2, deref{})));
// Transform the expression of iterators into an ignored value; as a
// side effect, increment the iterators in the expression.
boost::yap::transform(expr2, incr{});
}
return cont;
}
template <
template <class, class> class Cont,
typename T,
typename A,
typename Expr
>
Cont<T, A> & assign (Cont<T, A> & cont, Expr const & expr)
{
return op_assign(cont, expr, [](auto & cont_value, auto && expr_value) {
cont_value = std::forward<decltype(expr_value)>(expr_value);
});
}
template <
template <class, class> class Cont,
typename T,
typename A,
typename Expr
>
Cont<T, A> & operator+= (Cont<T, A> & cont, Expr const & expr)
{
return op_assign(cont, expr, [](auto & cont_value, auto && expr_value) {
cont_value += std::forward<decltype(expr_value)>(expr_value);
});
}
template <
template <class, class> class Cont,
typename T,
typename A,
typename Expr
>
Cont<T, A> & operator-= (Cont<T, A> & cont, Expr const & expr)
{
return op_assign(cont, expr, [](auto & cont_value, auto && expr_value) {
cont_value -= std::forward<decltype(expr_value)>(expr_value);
});
}
// A type trait that identifies std::vectors and std::lists.
template <typename T>
struct is_mixed : std::false_type {};
template <typename T, typename A>
struct is_mixed<std::vector<T, A>> : std::true_type {};
template <typename T, typename A>
struct is_mixed<std::list<T, A>> : std::true_type {};
// Define expression-producing operators over std::vectors and std::lists.
BOOST_YAP_USER_UDT_UNARY_OPERATOR(negate, boost::yap::expression, is_mixed); // -
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(multiplies, boost::yap::expression, is_mixed); // *
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(divides, boost::yap::expression, is_mixed); // /
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(modulus, boost::yap::expression, is_mixed); // %
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(plus, boost::yap::expression, is_mixed); // +
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(minus, boost::yap::expression, is_mixed); // -
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(less, boost::yap::expression, is_mixed); // <
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(greater, boost::yap::expression, is_mixed); // >
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(less_equal, boost::yap::expression, is_mixed); // <=
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(greater_equal, boost::yap::expression, is_mixed); // >=
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(equal_to, boost::yap::expression, is_mixed); // ==
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(not_equal_to, boost::yap::expression, is_mixed); // !=
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(logical_or, boost::yap::expression, is_mixed); // ||
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(logical_and, boost::yap::expression, is_mixed); // &&
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(bitwise_and, boost::yap::expression, is_mixed); // &
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(bitwise_or, boost::yap::expression, is_mixed); // |
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(bitwise_xor, boost::yap::expression, is_mixed); // ^
// Define a type that can resolve to any overload of std::sin().
struct sin_t
{
template<typename T>
T operator()(T x)
{
return std::sin(x);
}
};
int main()
{
int n = 10;
std::vector<int> a,b,c,d;
std::list<double> e;
std::list<std::complex<double>> f;
int i;
for(i = 0;i < n; ++i)
{
a.push_back(i);
b.push_back(2*i);
c.push_back(3*i);
d.push_back(i);
e.push_back(0.0);
f.push_back(std::complex<double>(1.0, 1.0));
}
assign(b, 2);
assign(d, a + b * c);
a += if_else(d < 30, b, c);
assign(e, c);
e += e - 4 / (c + 1);
auto sin = boost::yap::make_terminal(sin_t{});
f -= sin(0.1 * e * std::complex<double>(0.2, 1.2));
std::list<double>::const_iterator ei = e.begin();
std::list<std::complex<double>>::const_iterator fi = f.begin();
for (i = 0; i < n; ++i)
{
std::cout
<< "a(" << i << ") = " << a[i]
<< " b(" << i << ") = " << b[i]
<< " c(" << i << ") = " << c[i]
<< " d(" << i << ") = " << d[i]
<< " e(" << i << ") = " << *ei++
<< " f(" << i << ") = " << *fi++
<< std::endl;
}
return 0;
}
//]
|