1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
///////////////////////////////////////////////////////////////////
// Copyright Christopher Kormanyos 2019. //
// Distributed under the Boost Software License, //
// Version 1.0. (See accompanying file LICENSE_1_0.txt //
// or copy at http://www.boost.org/LICENSE_1_0.txt) //
///////////////////////////////////////////////////////////////////
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <ctime>
#include <iomanip>
#include <iostream>
#include <limits>
#include <iterator>
#include <vector>
#include <boost/multiprecision/cpp_int.hpp>
class random_pcg32_fast_base
{
protected:
using itype = std::uint64_t;
static constexpr bool is_mcg = false;
public:
virtual ~random_pcg32_fast_base() = default;
protected:
explicit random_pcg32_fast_base(const itype = itype()) { }
random_pcg32_fast_base(const random_pcg32_fast_base&) = default;
random_pcg32_fast_base& operator=(const random_pcg32_fast_base&) = default;
template<typename ArithmeticType>
static ArithmeticType rotr(const ArithmeticType& value_being_shifted,
const std::size_t bits_to_shift)
{
const std::size_t left_shift_amount =
std::numeric_limits<ArithmeticType>::digits - bits_to_shift;
const ArithmeticType part1 = ((bits_to_shift > 0U) ? ArithmeticType(value_being_shifted >> bits_to_shift) : value_being_shifted);
const ArithmeticType part2 = ((bits_to_shift > 0U) ? ArithmeticType(value_being_shifted << left_shift_amount) : 0U);
return ArithmeticType(part1 | part2);
}
template<typename xtype,
typename itype>
struct xsh_rr_mixin
{
static xtype output(const itype internal_value)
{
using bitcount_t = std::size_t;
constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8U);
constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8U);
constexpr bitcount_t sparebits = bits - xtypebits;
constexpr bitcount_t wantedopbits = ((xtypebits >= 128U) ? 7U
: ((xtypebits >= 64U) ? 6U
: ((xtypebits >= 32U) ? 5U
: ((xtypebits >= 16U) ? 4U
: 3U))));
constexpr bitcount_t opbits = ((sparebits >= wantedopbits) ? wantedopbits : sparebits);
constexpr bitcount_t amplifier = wantedopbits - opbits;
constexpr bitcount_t mask = (1ULL << opbits) - 1U;
constexpr bitcount_t topspare = opbits;
constexpr bitcount_t bottomspare = sparebits - topspare;
constexpr bitcount_t xshift = (topspare + xtypebits) / 2U;
const bitcount_t rot =
((opbits != 0U) ? (bitcount_t(internal_value >> (bits - opbits)) & mask)
: 0U);
const bitcount_t amprot = (rot << amplifier) & mask;
const itype internal_value_xor = internal_value ^ itype(internal_value >> xshift);
const xtype result = rotr(xtype(internal_value_xor >> bottomspare), amprot);
return result;
}
};
};
class random_pcg32_fast : public random_pcg32_fast_base
{
private:
static constexpr itype default_multiplier = static_cast<itype>(6364136223846793005ULL);
static constexpr itype default_increment = static_cast<itype>(1442695040888963407ULL);
public:
using result_type = std::uint32_t;
static constexpr itype default_seed = static_cast<itype>(0xCAFEF00DD15EA5E5ULL);
explicit random_pcg32_fast(const itype state = default_seed)
: random_pcg32_fast_base(state),
my_inc (default_increment),
my_state(is_mcg ? state | itype(3U) : bump(state + increment())) { }
random_pcg32_fast(const random_pcg32_fast& other)
: random_pcg32_fast_base(other),
my_inc (other.my_inc),
my_state(other.my_state) { }
virtual ~random_pcg32_fast() = default;
random_pcg32_fast& operator=(const random_pcg32_fast& other)
{
static_cast<void>(random_pcg32_fast_base::operator=(other));
if(this != &other)
{
my_inc = other.my_inc;
my_state = other.my_state;
}
return *this;
}
void seed(const itype state = default_seed)
{
my_inc = default_increment;
my_state = (is_mcg ? state | itype(3U) : bump(state + increment()));
}
result_type operator()()
{
const result_type value =
xsh_rr_mixin<result_type, itype>::output(base_generate0());
return value;
}
private:
itype my_inc;
itype my_state;
itype multiplier() const
{
return default_multiplier;
}
itype increment() const
{
return default_increment;
}
itype bump(const itype state)
{
return itype(state * multiplier()) + increment();
}
itype base_generate0()
{
const itype old_state = my_state;
my_state = bump(my_state);
return old_state;
}
};
template<typename UnsignedIntegralIteratorType,
typename RandomEngineType>
void get_random_big_uint(RandomEngineType& rng, UnsignedIntegralIteratorType it_out)
{
using local_random_value_type = typename RandomEngineType::result_type;
using local_uint_type = typename std::iterator_traits<UnsignedIntegralIteratorType>::value_type;
constexpr std::size_t digits_of_uint___type = static_cast<std::size_t>(std::numeric_limits<local_uint_type>::digits);
constexpr std::size_t digits_of_random_type = static_cast<std::size_t>(std::numeric_limits<local_random_value_type>::digits);
local_random_value_type next_random = rng();
*it_out = next_random;
for(std::size_t i = digits_of_random_type; i < digits_of_uint___type; i += digits_of_random_type)
{
(*it_out) <<= digits_of_random_type;
next_random = rng();
(*it_out) |= next_random;
}
}
using big_uint_backend_type =
boost::multiprecision::cpp_int_backend<8192UL << 1U,
8192UL << 1U,
boost::multiprecision::unsigned_magnitude>;
using big_uint_type = boost::multiprecision::number<big_uint_backend_type>;
namespace local
{
std::vector<big_uint_type> a(1024U);
std::vector<big_uint_type> b(a.size());
}
int main()
{
random_pcg32_fast rng;
rng.seed(std::clock());
for(auto i = 0U; i < local::a.size(); ++i)
{
get_random_big_uint(rng, local::a.begin() + i);
get_random_big_uint(rng, local::b.begin() + i);
}
std::size_t count = 0U;
float total_time = 0.0F;
const std::clock_t start = std::clock();
do
{
const std::size_t index = count % local::a.size();
local::a[index] * local::b[index];
++count;
}
while((total_time = (float(std::clock() - start) / float(CLOCKS_PER_SEC))) < 10.0F);
// Boost.Multiprecision 1.71
// bits: 16384, kops_per_sec: 4.7
// bits: 32768, kops_per_sec: 1.2
// bits: 65536, kops_per_sec: 0.3
// bits: 131072, kops_per_sec: 0.075
// bits: 262144, kops_per_sec: 0.019
// bits: 524288, kops_per_sec: 0.0047
// Boost.Multiprecision + kara mult
// bits: 16384, kops_per_sec: 4.8
// bits: 32768, kops_per_sec: 1.6
// bits: 65536, kops_per_sec: 0.5
// bits: 131072, kops_per_sec: 0.15
// bits: 262144, kops_per_sec: 0.043
// bits: 524288, kops_per_sec: 0.011
const float kops_per_sec = (float(count) / total_time) / 1000.0F;
std::cout << "bits: "
<< std::numeric_limits<big_uint_type>::digits
<< ", kops_per_sec: "
<< kops_per_sec
<< count << std::endl;
}
|