1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
// Copyright 2020 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
#include <iostream>
#include <benchmark/benchmark.h>
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/gmp.hpp>
#include <boost/random.hpp>
#include <cmath>
#include <immintrin.h>
using namespace boost::multiprecision;
using namespace boost::random;
namespace boost {
namespace multiprecision {
namespace backends {
template <unsigned MinBits1, unsigned MaxBits1, cpp_integer_type SignType1, cpp_int_check_type Checked1, class Allocator1>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!is_trivial_cpp_int<cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> >::value>::type
eval_gcd_old(
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& result,
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& a,
const cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1>& b)
{
using default_ops::eval_get_sign;
using default_ops::eval_is_zero;
using default_ops::eval_lsb;
if (a.size() == 1)
{
eval_gcd(result, b, *a.limbs());
return;
}
if (b.size() == 1)
{
eval_gcd(result, a, *b.limbs());
return;
}
cpp_int_backend<MinBits1, MaxBits1, SignType1, Checked1, Allocator1> u(a), v(b);
int s = eval_get_sign(u);
/* GCD(0,x) := x */
if (s < 0)
{
u.negate();
}
else if (s == 0)
{
result = v;
return;
}
s = eval_get_sign(v);
if (s < 0)
{
v.negate();
}
else if (s == 0)
{
result = u;
return;
}
/* Let shift := lg K, where K is the greatest power of 2
dividing both u and v. */
unsigned us = eval_lsb(u);
unsigned vs = eval_lsb(v);
int shift = (std::min)(us, vs);
eval_right_shift(u, us);
eval_right_shift(v, vs);
do
{
/* Now u and v are both odd, so diff(u, v) is even.
Let u = min(u, v), v = diff(u, v)/2. */
s = u.compare(v);
if (s > 0)
u.swap(v);
if (s == 0)
break;
while (((u.size() + 2 < v.size()) && (v.size() * 100 / u.size() > 105)) || ((u.size() <= 2) && (v.size() > 4)))
{
//
// Speical case: if u and v differ considerably in size, then a Euclid step
// is more efficient as we reduce v by several limbs in one go.
// Unfortunately it requires an expensive long division:
//
eval_modulus(v, v, u);
u.swap(v);
}
if (v.size() <= 2)
{
//
// Special case: if v has no more than 2 limbs
// then we can reduce u and v to a pair of integers and perform
// direct integer gcd:
//
if (v.size() == 1)
u = eval_gcd(*v.limbs(), *u.limbs());
else
{
double_limb_type i = v.limbs()[0] | (static_cast<double_limb_type>(v.limbs()[1]) << sizeof(limb_type) * CHAR_BIT);
double_limb_type j = (u.size() == 1) ? *u.limbs() : u.limbs()[0] | (static_cast<double_limb_type>(u.limbs()[1]) << sizeof(limb_type) * CHAR_BIT);
u = eval_gcd(i, j);
}
break;
}
//
// Regular binary gcd case:
//
eval_subtract(v, u);
vs = eval_lsb(v);
eval_right_shift(v, vs);
} while (true);
result = u;
eval_left_shift(result, shift);
}
}
}
}
template <class T>
std::tuple<std::vector<T>, std::vector<T>, std::vector<T> >& get_test_vector(unsigned bits)
{
static std::map<unsigned, std::tuple<std::vector<T>, std::vector<T>, std::vector<T> > > data;
std::tuple<std::vector<T>, std::vector<T>, std::vector<T> >& result = data[bits];
if (std::get<0>(result).size() == 0)
{
mt19937 mt;
uniform_int_distribution<T> ui(T(1) << (bits - 1), T(1) << bits);
std::vector<T>& a = std::get<0>(result);
std::vector<T>& b = std::get<1>(result);
std::vector<T>& c = std::get<2>(result);
for (unsigned i = 0; i < 1000; ++i)
{
a.push_back(ui(mt));
b.push_back(ui(mt));
if (b.back() > a.back())
b.back().swap(a.back());
c.push_back(0);
}
}
return result;
}
template <class T>
std::vector<T>& get_test_vector_a(unsigned bits)
{
return std::get<0>(get_test_vector<T>(bits));
}
template <class T>
std::vector<T>& get_test_vector_b(unsigned bits)
{
return std::get<1>(get_test_vector<T>(bits));
}
template <class T>
std::vector<T>& get_test_vector_c(unsigned bits)
{
return std::get<2>(get_test_vector<T>(bits));
}
template <typename T>
static void BM_gcd_old(benchmark::State& state)
{
int bits = state.range(0);
std::vector<T>& a = get_test_vector_a<T>(bits);
std::vector<T>& b = get_test_vector_b<T>(bits);
std::vector<T>& c = get_test_vector_c<T>(bits);
for (auto _ : state)
{
for (unsigned i = 0; i < a.size(); ++i)
eval_gcd_old(c[i].backend(), a[i].backend(), b[i].backend());
}
state.SetComplexityN(bits);
}
template <typename T>
static void BM_gcd_current(benchmark::State& state)
{
int bits = state.range(0);
std::vector<T>& a = get_test_vector_a<T>(bits);
std::vector<T>& b = get_test_vector_b<T>(bits);
std::vector<T>& c = get_test_vector_c<T>(bits);
for (auto _ : state)
{
for (unsigned i = 0; i < a.size(); ++i)
eval_gcd(c[i].backend(), a[i].backend(), b[i].backend());
}
state.SetComplexityN(bits);
}
constexpr unsigned lower_range = 512;
constexpr unsigned upper_range = 1 << 15;
BENCHMARK_TEMPLATE(BM_gcd_old, cpp_int)->RangeMultiplier(2)->Range(lower_range, upper_range)->Unit(benchmark::kMillisecond)->Complexity();
BENCHMARK_TEMPLATE(BM_gcd_current, cpp_int)->RangeMultiplier(2)->Range(lower_range, upper_range)->Unit(benchmark::kMillisecond)->Complexity();
BENCHMARK_TEMPLATE(BM_gcd_old, cpp_int)->RangeMultiplier(2)->Range(lower_range, upper_range)->Unit(benchmark::kMillisecond)->Complexity();
BENCHMARK_TEMPLATE(BM_gcd_current, mpz_int)->RangeMultiplier(2)->Range(lower_range, upper_range)->Unit(benchmark::kMillisecond)->Complexity();
BENCHMARK_TEMPLATE(BM_gcd_current, mpz_int)->RangeMultiplier(2)->Range(lower_range, upper_range)->Unit(benchmark::kMillisecond)->Complexity();
BENCHMARK_MAIN();
|