1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
// Copyright 2020 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
#include <iostream>
#include <benchmark/benchmark.h>
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/gmp.hpp>
#include <gmpxx.h>
template <class Integer>
inline Integer factorial(unsigned n)
{
Integer result = 1;
for (unsigned k = 1; k <= n; ++k)
result *= k;
return result;
}
template <class Rational, class Integer = typename Rational::value_type>
inline Rational binomial(unsigned n, unsigned k)
{
return Rational(factorial<Integer>(n), factorial<Integer>(k) * factorial<Integer>(n - k));
}
inline mpz_class pow(mpz_class i, unsigned p)
{
mpz_class result;
mpz_pow_ui(result.get_mpz_t(), i.get_mpz_t(), p);
return result;
}
template <class Rational, class Integer = typename Rational::value_type>
Rational Bernoulli(unsigned m)
{
Rational result = 0;
for (unsigned k = 0; k <= m; ++k)
{
Rational inner = 0;
for (unsigned v = 0; v <= k; ++v)
{
Rational term = binomial<Rational, Integer>(k, v) * Rational(pow(Integer(v), m), k + 1);
if (v & 1)
term = -term;
inner += term;
}
result += inner;
}
return result;
}
template <class Rational, class Integer = typename Rational::value_type>
static void BM_bernoulli(benchmark::State& state)
{
int m = state.range(0);
for (auto _ : state)
{
benchmark::DoNotOptimize(Bernoulli<Rational, Integer>(m));
}
}
unsigned allocation_count = 0;
void* (*alloc_func_ptr)(size_t);
void* (*realloc_func_ptr)(void*, size_t, size_t);
void (*free_func_ptr)(void*, size_t);
void* alloc_func(size_t n)
{
++allocation_count;
return (*alloc_func_ptr)(n);
}
void free_func(void* p, size_t n)
{
(*free_func_ptr)(p, n);
}
void* realloc_func(void* p, size_t old, size_t n)
{
++allocation_count;
return (*realloc_func_ptr)(p, old, n);
}
unsigned new_count = 0;
void* operator new(std::size_t n) throw(std::bad_alloc)
{
++new_count;
return std::malloc(n);
}
void operator delete(void* p) throw()
{
std::free(p);
}
void* operator new[](std::size_t n) throw(std::bad_alloc)
{
++new_count;
return std::malloc(n);
}
void operator delete[](void* p) throw()
{
std::free(p);
}
int main()
{
using namespace boost::multiprecision;
mp_get_memory_functions(&alloc_func_ptr, &realloc_func_ptr, &free_func_ptr);
mp_set_memory_functions(&alloc_func, &realloc_func, &free_func);
std::cout << "[table Total Allocation Counts for Bernoulli Number Calculation\n"
"[[m][cpp_rational][mpq_rational][number<rational_adaptor<gmp_int>>][mpq_class]]\n";
for (unsigned m = 2; m < 200; m += 2)
{
std::cout << "[[" << m << "][";
new_count = 0;
Bernoulli<cpp_rational>(m);
std::cout << new_count << "][";
allocation_count = 0;
Bernoulli<mpq_rational>(m);
std::cout << allocation_count << "][";
allocation_count = 0;
Bernoulli<number<rational_adaptor<gmp_int>>>(m);
std::cout << allocation_count << "][";
allocation_count = 0;
Bernoulli<mpq_class, mpz_class>(m);
std::cout << allocation_count << "]]\n";
}
std::cout << "]\n";
return 0;
}
|