1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
//
// Copyright (c) 2018-2019, Cem Bassoy, cem.bassoy@gmail.com
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// Fraunhofer IOSB, Ettlingen, Germany
//
#include <boost/numeric/ublas/tensor.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <iostream>
int main()
{
using namespace boost::numeric::ublas;
using format_t = column_major;
using value_t = float; // std::complex<double>;
using tensor_t = tensor<value_t,format_t>;
using matrix_t = matrix<value_t,format_t>;
using vector_t = vector<value_t>;
// Tensor-Vector-Multiplications - Including Transposition
{
auto n = shape{3,4,2};
auto A = tensor_t(n,2);
auto q = 0u; // contraction mode
// C1(j,k) = T2(j,k) + A(i,j,k)*T1(i);
q = 1u;
tensor_t C1 = matrix_t(n[1],n[2],2) + prod(A,vector_t(n[q-1],1),q);
// C2(i,k) = A(i,j,k)*T1(j) + 4;
q = 2u;
tensor_t C2 = prod(A,vector_t(n[q-1],1),q) + 4;
// C3() = A(i,j,k)*T1(i)*T2(j)*T2(k);
tensor_t C3 = prod(prod(prod(A,vector_t(n[0],1),1),vector_t(n[1],1),1),vector_t(n[2],1),1);
// C4(i,j) = A(k,i,j)*T1(k) + 4;
q = 1u;
tensor_t C4 = prod(trans(A,{2,3,1}),vector_t(n[2],1),q) + 4;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C1(j,k) = T2(j,k) + A(i,j,k)*T1(i);" << std::endl << std::endl;
std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C2(i,k) = A(i,j,k)*T1(j) + 4;" << std::endl << std::endl;
std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C3() = A(i,j,k)*T1(i)*T2(j)*T2(k);" << std::endl << std::endl;
std::cout << "C3()=" << C3(0) << ";" << std::endl << std::endl;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C4(i,j) = A(k,i,j)*T1(k) + 4;" << std::endl << std::endl;
std::cout << "C4=" << C4 << ";" << std::endl << std::endl;
}
// Tensor-Matrix-Multiplications - Including Transposition
{
auto n = shape{3,4,2};
auto A = tensor_t(n,2);
auto m = 5u;
auto q = 0u; // contraction mode
// C1(l,j,k) = T2(l,j,k) + A(i,j,k)*T1(l,i);
q = 1u;
tensor_t C1 = tensor_t(shape{m,n[1],n[2]},2) + prod(A,matrix_t(m,n[q-1],1),q);
// C2(i,l,k) = A(i,j,k)*T1(l,j) + 4;
q = 2u;
tensor_t C2 = prod(A,matrix_t(m,n[q-1],1),q) + 4;
// C3(i,l1,l2) = A(i,j,k)*T1(l1,j)*T2(l2,k);
q = 3u;
tensor_t C3 = prod(prod(A,matrix_t(m+1,n[q-2],1),q-1),matrix_t(m+2,n[q-1],1),q);
// C4(i,l1,l2) = A(i,j,k)*T2(l2,k)*T1(l1,j);
tensor_t C4 = prod(prod(A,matrix_t(m+2,n[q-1],1),q),matrix_t(m+1,n[q-2],1),q-1);
// C5(i,k,l) = A(i,k,j)*T1(l,j) + 4;
q = 3u;
tensor_t C5 = prod(trans(A,{1,3,2}),matrix_t(m,n[1],1),q) + 4;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C1(l,j,k) = T2(l,j,k) + A(i,j,k)*T1(l,i);" << std::endl << std::endl;
std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C2(i,l,k) = A(i,j,k)*T1(l,j) + 4;" << std::endl << std::endl;
std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C3(i,l1,l2) = A(i,j,k)*T1(l1,j)*T2(l2,k);" << std::endl << std::endl;
std::cout << "C3=" << C3 << ";" << std::endl << std::endl;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C4(i,l1,l2) = A(i,j,k)*T2(l2,k)*T1(l1,j);" << std::endl << std::endl;
std::cout << "C4=" << C4 << ";" << std::endl << std::endl;
std::cout << "% C3 and C4 should have the same values, true? " << std::boolalpha << (C3 == C4) << "!" << std::endl;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C5(i,k,l) = A(i,k,j)*T1(l,j) + 4;" << std::endl << std::endl;
std::cout << "C5=" << C5 << ";" << std::endl << std::endl;
}
// Tensor-Tensor-Multiplications Including Transposition
{
using perm_t = std::vector<std::size_t>;
auto na = shape{3,4,5};
auto nb = shape{4,6,3,2};
auto A = tensor_t(na,2);
auto B = tensor_t(nb,3);
// C1(j,l) = T(j,l) + A(i,j,k)*A(i,j,l) + 5;
tensor_t C1 = tensor_t(shape{na[2],na[2]},2) + prod(A,A,perm_t{1,2}) + 5;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C1(k,l) = T(k,l) + A(i,j,k)*A(i,j,l) + 5;" << std::endl << std::endl;
std::cout << "C1=" << C1 << ";" << std::endl << std::endl;
// C2(k,l,m) = T(k,l,m) + A(i,j,k)*B(j,l,i,m) + 5;
tensor_t C2 = tensor_t(shape{na[2],nb[1],nb[3]},2) + prod(A,B,perm_t{1,2},perm_t{3,1}) + 5;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C2(k,l,m) = T(k,l,m) + A(i,j,k)*B(j,l,i,m) + 5;" << std::endl << std::endl;
std::cout << "C2=" << C2 << ";" << std::endl << std::endl;
// C3(k,l,m) = T(k,l,m) + A(i,j,k)*trans(B(j,l,i,m),{2,3,1,4})+ 5;
tensor_t C3 = tensor_t(shape{na[2],nb[1],nb[3]},2) + prod(A,trans(B,{2,3,1,4}),perm_t{1,2}) + 5;
// formatted output
std::cout << "% --------------------------- " << std::endl;
std::cout << "% --------------------------- " << std::endl << std::endl;
std::cout << "% C3(k,l,m) = T(k,l,m) + A(i,j,k)*trans(B(j,l,i,m),{2,3,1,4})+ 5;" << std::endl << std::endl;
std::cout << "C3=" << C3 << ";" << std::endl << std::endl;
}
}
|