1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
\name{plot.boot}
\alias{plot.boot}
\title{
Plots of the Output of a Bootstrap Simulation
}
\description{
This takes a bootstrap object and produces plots for the bootstrap
replicates of the variable of interest.
}
\usage{
\method{plot}{boot}(x, index=1, t0=NULL, t=NULL, jack=FALSE, qdist="norm",
nclass=NULL, df, \dots)
}
\arguments{
\item{x}{
An object of class \code{"boot"} returned from one of the bootstrap generation
functions.
}
\item{index}{
The index of the variable of interest within the output of \code{boot.out}. This
is ignored if \code{t} and \code{t0} are supplied.
}
\item{t0}{
The original value of the statistic. This defaults to \code{boot.out$t0[index]}
unless \code{t} is supplied when it defaults to \code{NULL}. In that case no vertical
line is drawn on the histogram.
}
\item{t}{
The bootstrap replicates of the statistic. Usually this will take on its
default value of \code{boot.out$t[,index]}, however it may be useful sometimes
to supply a different set of values which are a function of \code{boot.out$t}.
}
\item{jack}{
A logical value indicating whether a jackknife-after-bootstrap plot is
required. The default is not to produce such a plot.
}
\item{qdist}{
The distribution against which the Q-Q plot should be drawn. At present
\code{"norm"} (normal distribution - the default) and \code{"chisq"} (chi-squared
distribution) are the only possible values.
}
\item{nclass}{
An integer giving the number of classes to be used in the bootstrap histogram.
The default is the integer between 10 and 100 closest to
\code{ceiling(length(t)/25)}.
}
\item{df}{
If \code{qdist} is \code{"chisq"} then this is the degrees of freedom for the chi-squared
distribution to be used. It is a required argument in that case.
}
\item{...}{
When \code{jack} is \code{TRUE} additional parameters to \code{jack.after.boot} can be
supplied. See the help file for \code{jack.after.boot} for details of the
possible parameters.
}}
\value{
\code{boot.out} is returned invisibly.
}
\section{Side Effects}{
All screens are closed and cleared and a number of plots are produced on the
current graphics device. Screens are closed but not cleared at termination
of this function.
}
\details{
This function will generally produce two side-by-side plots. The left plot
will be a histogram of the bootstrap replicates. Usually the breaks of the
histogram will be chosen so that \code{t0} is at a breakpoint and all intervals
are of equal length. A vertical dotted line indicates the position of \code{t0}.
This cannot be done if \code{t} is supplied but \code{t0} is not and so, in that case,
the breakpoints are computed by \code{hist} using the \code{nclass} argument and no
vertical line is drawn.
The second plot is a Q-Q plot of the bootstrap replicates. The order
statistics
of the replicates can be plotted against normal or chi-squared quantiles. In
either case the expected line is also plotted. For the normal, this will
have intercept \code{mean(t)} and slope \code{sqrt(var(t))} while for the chi-squared
it has intercept 0 and slope 1.
If \code{jack} is \code{TRUE} a third plot is produced beneath these two. That plot
is the jackknife-after-bootstrap plot. This plot may only be requested
when nonparametric simulation has been used. See \code{jack.after.boot} for further
details of this plot.
}
\seealso{
\code{\link{boot}}, \code{\link{jack.after.boot}}, \code{\link{print.boot}}
}
\examples{
# We fit an exponential model to the air-conditioning data and use
# that for a parametric bootstrap. Then we look at plots of the
# resampled means.
air.rg <- function(data, mle)
rexp(length(data), 1/mle)
air.boot <- boot(aircondit$hours, mean, R=999, sim="parametric",
ran.gen=air.rg, mle=mean(aircondit$hours))
plot(air.boot)
# In the difference of means example for the last two series of the
# gravity data
grav1 <- gravity[as.numeric(gravity[,2])>=7,]
grav.fun <- function(dat, w)
{ strata <- tapply(dat[, 2], as.numeric(dat[, 2]))
d <- dat[, 1]
ns <- tabulate(strata)
w <- w/tapply(w, strata, sum)[strata]
mns <- tapply(d * w, strata, sum)
mn2 <- tapply(d * d * w, strata, sum)
s2hat <- sum((mn2 - mns^2)/ns)
c(mns[2]-mns[1],s2hat)
}
grav.boot <- boot(grav1, grav.fun, R=499, stype="w", strata=grav1[,2])
plot(grav.boot)
# now suppose we want to look at the studentized differences.
grav.z <- (grav.boot$t[,1]-grav.boot$t0[1])/sqrt(grav.boot$t[,2])
plot(grav.boot,t=grav.z,t0=0)
# In this example we look at the one of the partial correlations for the
# head dimensions in the dataset frets.
pcorr <- function( x )
{
# Function to find the correlations and partial correlations between
# the four measurements.
v <- cor(x);
v.d <- diag(var(x));
iv <- solve(v);
iv.d <- sqrt(diag(iv));
iv <- - diag(1/iv.d) \%*\% iv \%*\% diag(1/iv.d);
q <- NULL;
n <- nrow(v);
for (i in 1:(n-1))
q <- rbind( q, c(v[i,1:i],iv[i,(i+1):n]) );
q <- rbind( q, v[n,] );
diag(q) <- round(diag(q));
q
}
frets.fun <- function( data, i )
{ d <- data[i,];
v <- pcorr( d );
c(v[1,],v[2,],v[3,],v[4,])
}
frets.boot <- boot(log(as.matrix(frets)), frets.fun, R=999)
plot(frets.boot, index=7, jack=TRUE, stinf=FALSE, useJ=FALSE)
}
\keyword{hplot}
\keyword{nonparametric}
% Converted by Sd2Rd version 1.15.
|