File: Frame.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (167 lines) | stat: -rw-r--r-- 3,923 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Base/Axis/Frame.cpp
//! @brief     Implements class Frame.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Base/Axis/Frame.h"
#include "Base/Axis/Scale.h"
#include "Base/Util/Assert.h"
#include "Base/Util/StringUtil.h"

namespace {

size_t product_size(const std::vector<const Scale*>& axes)
{
    size_t result = 1;
    for (const Scale* ax : axes)
        result *= ax->size();
    return result;
}

} // namespace


Frame::Frame(const std::vector<const Scale*>& axes)
    : m_axes(axes)
    , m_size(::product_size(axes))
{
}

Frame::Frame(const Scale* ax0)
    : Frame(std::vector<const Scale*>{ax0})
{
}

Frame::Frame(const Scale* ax0, const Scale* ax1)
    : Frame(std::vector<const Scale*>{ax0, ax1})
{
}

Frame::Frame(const Frame&) = default;

Frame::~Frame() = default;

Frame* Frame::clone() const
{
    return new Frame(*this);
}

size_t Frame::rank() const
{
    return m_axes.size();
}
const Scale& Frame::axis(size_t k_axis) const
{
    ASSERT(k_axis < rank());
    return *m_axes.at(k_axis);
}
const Scale& Frame::xAxis() const
{
    return *m_axes.at(0);
}
const Scale& Frame::yAxis() const
{
    ASSERT(1 < rank());
    return *m_axes.at(1);
}

double Frame::projectedCoord(size_t i_flat, size_t k_axis) const
{
    return projectedBin(i_flat, k_axis).center();
}

const Bin1D& Frame::projectedBin(size_t i_flat, size_t k_axis) const
{
    auto axis_index = projectedIndex(i_flat, k_axis);
    return m_axes[k_axis]->bin(axis_index);
}

std::vector<int> Frame::allIndices(size_t i_flat) const
{
    std::vector<int> result(rank());
    for (size_t k = 0; k < rank(); ++k)
        result[k] = projectedIndex(i_flat, k);
    return result;
}

size_t Frame::projectedIndex(size_t i, size_t k_axis) const
{
    ASSERT(k_axis < rank());
    if (rank() == 1)
        return i;
    if (rank() == 2) {
        if (k_axis == 0)
            return i % m_axes[0]->size();
        if (k_axis == 1)
            return (i / m_axes[0]->size()) % m_axes[1]->size();
    }
    ASSERT_NEVER;
}

bool Frame::operator==(const Frame& o) const
{
    if (rank() != o.rank())
        return false;
    for (size_t k = 0; k < rank(); ++k)
        if (!(axis(k) == o.axis(k)))
            return false;
    return true;
}

bool Frame::hasSameSizes(const Frame& o) const
{
    if (rank() != o.rank())
        return false;
    for (size_t k = 0; k < rank(); ++k)
        if (axis(k).size() != o.axis(k).size())
            return false;
    return true;
}

Frame Frame::plottableFrame() const
{
    std::vector<const Scale*> outaxes;
    for (size_t k = 0; k < rank(); ++k) {
        auto* s = new Scale(axis(k).plottableScale());
        outaxes.emplace_back(s);
    }
    return Frame(outaxes);
}

Frame Frame::angularFrame(double lambda, double alpha_i) const
{
    ASSERT(rank() == 2);

    auto* phi_f_scale = new Scale(xAxis().phi_f_Scale(lambda));
    auto* alpha_f_scale = new Scale(yAxis().alpha_f_Scale(lambda, alpha_i));

    return Frame(phi_f_scale, alpha_f_scale);
}

Frame Frame::qSpaceFrame(double lambda, double alpha_i) const
{
    ASSERT(rank() == 2);

    auto* qy_scale = new Scale(xAxis().qy_Scale(lambda));
    auto* qz_scale = new Scale(yAxis().qz_Scale(lambda, alpha_i));

    return Frame(qy_scale, qz_scale);
}

Frame Frame::flat() const
{
    std::vector<const Scale*> outaxes;
    for (const Scale* s : m_axes)
        if (s->size() > 1)
            outaxes.emplace_back(s->clone());
    return Frame(outaxes);
}