File: FourierTransform.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (343 lines) | stat: -rw-r--r-- 10,341 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Base/Math/FourierTransform.cpp
//! @brief     Implements class FourierTransform.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2015
//! @authors   Scientific Computing Group at MLZ Garching
//
//  ************************************************************************************************

#include "Base/Math/FourierTransform.h"
#include "Base/Util/Assert.h"
#include <algorithm>
#include <cmath>

namespace {

template <typename T> std::vector<T> fftshift_1d(const std::vector<T>& src, bool inverse)
{
    std::vector<T> result = src;

    // Centering FT around zero frequency
    int col_shift = (result.size() + 1) / 2;

    if (inverse)
        std::rotate(result.rbegin(), result.rbegin() + col_shift, result.rend());
    else
        std::rotate(result.begin(), result.begin() + col_shift, result.end());
    return result;
}

template <typename T> Field2D<T> fftshift_2d(const Field2D<T>& src, bool inverse)
{
    Field2D<T> result = src;

    // Centering FT around zero frequency
    int row_shift = (result.size() + 1) / 2;
    int col_shift = (result[0].size() + 1) / 2;

    // First shift the rows, then the cols
    if (inverse) {
        std::rotate(result.rbegin(), result.rbegin() + row_shift, result.rend());
        for (auto& row : result)
            std::rotate(row.rbegin(), row.rbegin() + col_shift, row.rend());
    } else {
        std::rotate(result.begin(), result.begin() + row_shift, result.end());
        for (auto& row : result)
            std::rotate(row.begin(), row.begin() + col_shift, row.end());
    }
    return result;
}

} // namespace

FourierTransform::FourierTransform() = default;

FourierTransform::Workspace::~Workspace()
{
    clear();
}

void FourierTransform::Workspace::clear()
{
    // rows (h) and columns (w)
    h = 0;
    w_real = 0;
    w_fftw = 0;

    if (arr_real != nullptr) {
        fftw_free((double*)arr_real);
        arr_real = nullptr;
    }

    if (arr_fftw != nullptr) {
        fftw_free((fftw_complex*)arr_fftw);
        arr_fftw = nullptr;
    }

    if (p_forw != nullptr) {
        fftw_destroy_plan(p_forw);
        p_forw = nullptr;
    }

    if (p_back != nullptr) {
        fftw_destroy_plan(p_back);
        p_back = nullptr;
    }
}

/* ************************************************************************* */
// Fourier Transform in 2D
/* ************************************************************************* */
complex2d_t FourierTransform::rfft(const double2d_t& src)
{
    // rows (h) and columns (w) of the input 'source'
    int h = src.size();
    int w_real = !src.empty() ? src[0].size() : 0;

    // initialization
    init_r2c(h, w_real);

    // Compute the forward FT
    fftw_forward_FT(src);

    // Pack the result as std vector of complex values
    return rfft2complex_vec();
}

double2d_t FourierTransform::irfft(const complex2d_t& src, int w_real)
{
    // rows (h) of the input 'source'
    int h = src.size();

    // initialization
    init_c2r(h, w_real);

    // Compute the unnormalized backward FT
    fftw_backward_FT(src);

    // Normalize aack the result as std vector of real values
    return irfft2double_vec();
}

double2d_t FourierTransform::ramplitude(const double2d_t& src)
{
    complex2d_t complex_result = rfft(src);
    return fft2amp(complex_result);
}

/* ************************************************************************* */
// Fourier Transform 2D shift - center array around zero frequency
/* ************************************************************************* */
double2d_t FourierTransform::fftshift(const double2d_t& src)
{
    return ::fftshift_2d(src, false);
}
complex2d_t FourierTransform::fftshift(const complex2d_t& src)
{
    return ::fftshift_2d(src, false);
}

double2d_t FourierTransform::ifftshift(const double2d_t& src)
{
    return ::fftshift_2d(src, true);
}
complex2d_t FourierTransform::ifftshift(const complex2d_t& src)
{
    return ::fftshift_2d(src, true);
}

/* ************************************************************************* */
// Fourier Transform in 1D
/* ************************************************************************* */
std::vector<complex_t> FourierTransform::rfft(const std::vector<double>& src)
{
    // we simply create 2d arrays with length of first dimension equal to 1, and call 2d FT
    double2d_t src2d{src};
    complex2d_t result2d = rfft(src2d);

    ASSERT(result2d.size() == 1);
    return result2d[0];
}

std::vector<double> FourierTransform::irfft(const std::vector<complex_t>& src, int w_src)
{
    // we simply create 2d arrays with length of first dimension equal to 1, and call 2d FT
    complex2d_t source2d{src};
    double2d_t result2d = irfft(source2d, w_src);

    ASSERT(result2d.size() == 1);
    return result2d[0];
}

std::vector<double> FourierTransform::ramplitude(const std::vector<double>& src)
{
    complex2d_t complex_result2d{rfft(src)};

    double2d_t result2d = fft2amp(complex_result2d);

    ASSERT(result2d.size() == 1);
    return result2d[0];
}

/* ************************************************************************* */
// Fourier Transform 1D shift - center around zero frequency
/* ************************************************************************* */
std::vector<double> FourierTransform::fftshift(const std::vector<double>& src)
{
    return ::fftshift_1d(src, false);
}
std::vector<complex_t> FourierTransform::fftshift(const std::vector<complex_t>& src)
{
    return ::fftshift_1d(src, false);
}

std::vector<double> FourierTransform::ifftshift(const std::vector<double>& src)
{
    return ::fftshift_1d(src, true);
}
std::vector<complex_t> FourierTransform::ifftshift(const std::vector<complex_t>& src)
{
    return ::fftshift_1d(src, true);
}

/* ************************************************************************************ */
// initialize input and output arrays in workspace for fast Fourier transformation (fftw)
/* ************************************************************************************ */

void FourierTransform::init(int h, int w_real)
{
    ASSERT(h);
    ASSERT(w_real);

    ws.clear();
    ws.h = h;
    ws.w_real = w_real;
    ws.w_fftw = w_real / 2 + 1;

    ws.arr_real = fftw_alloc_real(ws.h * ws.w_real);
    ws.arr_fftw = fftw_alloc_real(ws.h * ws.w_fftw * sizeof(fftw_complex));
}

void FourierTransform::init_r2c(int h, int w_real)
{
    init(h, w_real);

    // Initialization of the plan
    ws.p_forw = fftw_plan_dft_r2c_2d(ws.h, ws.w_real, ws.arr_real, (fftw_complex*)ws.arr_fftw,
                                     FFTW_ESTIMATE);
    ASSERT(ws.p_forw);
}

void FourierTransform::init_c2r(int h, int w_real)
{
    init(h, w_real);

    // Initialization of the plan
    ws.p_back = fftw_plan_dft_c2r_2d(ws.h, 2 * ws.w_fftw, (fftw_complex*)ws.arr_fftw, ws.arr_real,
                                     FFTW_ESTIMATE);
    ws.p_back = fftw_plan_dft_c2r_2d(ws.h, ws.w_real, (fftw_complex*)ws.arr_fftw, ws.arr_real,
                                     FFTW_ESTIMATE);
    ASSERT(ws.p_back);
}

/* ************************************************************************************ */
// convert output to standard containers
/* ************************************************************************************ */

complex2d_t FourierTransform::rfft2complex_vec() const
{
    ASSERT(ws.arr_fftw);

    complex2d_t result(ws.h, std::vector<complex_t>(ws.w_fftw));
    double* ptr = ws.arr_fftw;

    // Storing FT output
    for (int i = 0; i < ws.h; i++)
        for (int j = 0; j < ws.w_fftw; j++) {
            result[i][j] = complex_t(*ptr, *(ptr + 1));
            ptr += 2;
        }
    return result;
}

double2d_t FourierTransform::irfft2double_vec() const
{
    ASSERT(ws.arr_real);

    double* ptr = ws.arr_real;
    double2d_t result(ws.h, std::vector<double>(ws.w_real));

    double factor = ws.h * ws.w_real;

    // Storing FT output
    for (int i = 0; i < ws.h; i++)
        for (int j = 0; j < ws.w_real; j++) {
            result[i][j] = *ptr / factor;
            ptr++;
        }
    return result;
}

double2d_t FourierTransform::fft2amp(complex2d_t& source) const
{
    ASSERT(ws.arr_fftw);

    double2d_t result(ws.h, std::vector<double>(ws.w_real));

    // Storing FT output
    for (int i = 0; i < ws.h; i++) {
        int k = (i == 0) ? 0 : ws.h - i;
        for (int j = 0; j < ws.w_fftw; j++) {
            result[i][j] = std::hypot(source[i][j].real(), source[i][j].imag());
            if (j != 0)
                result[k][ws.w_real - j] = result[i][j];
        }
    }
    return result;
}

/* ************************************************************************* */
// initialize input and output arrays for fast Fourier transformation
/* ************************************************************************* */

void FourierTransform::fftw_forward_FT(const double2d_t& src) const
{
    // Initializing the content of input array to zero for all elements (Do we need this at all?)
    double* ptr_in_end = ws.arr_real + ws.h * ws.w_real;
    for (double* ptr = ws.arr_real; ptr != ptr_in_end; ++ptr)
        *ptr = 0.0;

    // Building the input signal for fftw algorithm
    for (int row = 0; row < ws.h; ++row)
        for (int col = 0; col < ws.w_real; ++col)
            ws.arr_real[row * ws.w_real + col] += src[row][col];

    // Computing the FFT with fftw plan
    fftw_execute(ws.p_forw);
}

void FourierTransform::fftw_backward_FT(const complex2d_t& src) const
{
    // Initializing the content of input array to zero for all elements (Do we need this at all?)
    double* ptr_in_end = ws.arr_fftw + 2 * ws.h * ws.w_fftw;
    for (double* ptr = ws.arr_fftw; ptr != ptr_in_end; ++ptr)
        *ptr = 0.0;

    // Building the fft input signal
    double* ptr = ws.arr_fftw;
    for (int row = 0; row < ws.h; ++row)
        for (int col = 0; col < ws.w_fftw; ++col) {
            *ptr += src[row][col].real();
            *(ptr + 1) += src[row][col].imag();
            ptr += 2;
        }

    // Computing the IFFT with fftw plan
    fftw_execute(ws.p_back);
}