1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Base/Py/PyFmt.cpp
//! @brief Implements functions from namespace pyfmt.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Base/Py/PyFmt.h"
#include "Base/Const/Units.h" // printDegrees
#include "Base/Math/Numeric.h"
#include "Base/Util/Assert.h"
#include "Base/Util/StringUtil.h"
#include <iomanip>
#include <numbers>
using std::numbers::pi;
std::string Py::Fmt::printImportedSymbols(const std::string& code)
{
std::vector<std::string> to_declare;
for (const std::string key : {"angstrom", "deg", "nm", "nm2", "nm3", "micrometer"})
if (code.find("*" + key) != std::string::npos)
to_declare.push_back(key);
for (const std::string key : {"R3"})
if (code.find(key) != std::string::npos)
to_declare.push_back(key);
return "from bornagain import " + Base::String::join(to_declare, ", ") + "\n";
}
std::string Py::Fmt::printInt(int value)
{
return std::to_string(value);
}
std::string Py::Fmt::printBool(double value)
{
return value ? "True" : "False";
}
std::string Py::Fmt::printDouble(double input)
{
std::ostringstream inter;
inter << std::setprecision(12);
if (std::abs(input) < std::numeric_limits<double>::epsilon()) {
inter << "0.0";
return inter.str();
}
inter << input;
if (inter.str().find('e') == std::string::npos && inter.str().find('.') == std::string::npos)
inter << ".0";
return inter.str();
}
//! prints double as an integer, if possible within standard accuracy
std::string Py::Fmt::printLightDouble(double input)
{
std::ostringstream inter;
int ival = std::lround(input);
if (std::abs(input - ival) < 1e-11)
inter << ival;
else {
inter << std::setprecision(12);
if (std::abs(input) < std::numeric_limits<double>::epsilon())
return "0.0";
inter << input;
if (inter.str().find('e') == std::string::npos
&& inter.str().find('.') == std::string::npos)
inter << ".0";
}
return inter.str();
}
std::string Py::Fmt::printNm(double input, int pow)
{
std::ostringstream inter;
inter << std::setprecision(12);
inter << printLightDouble(input);
if (pow > 0)
inter << "*nm";
else if (pow < 0)
inter << "/nm";
std::string str_pow = (std::abs(pow) >= 2) ? printInt(pow) : "";
inter << str_pow;
return inter.str();
}
// 1.000000e7 -> 1e7
std::string Py::Fmt::printScientificDouble(double input)
{
std::ostringstream inter;
inter << std::scientific;
inter << input;
std::string::size_type pos = inter.str().find('e');
if (pos == std::string::npos)
return inter.str();
std::string part1 = inter.str().substr(0, pos);
std::string part2 = inter.str().substr(pos, std::string::npos);
part1.erase(part1.find_last_not_of('0') + 1, std::string::npos);
if (part1.back() == '.')
part1 += "0";
return part1 + part2;
}
std::string Py::Fmt::printDegrees(double input)
{
std::ostringstream inter;
inter << printLightDouble(Units::rad2deg(input)) << "*deg";
return inter.str();
}
std::string Py::Fmt::printValue(double value, const std::string& units)
{
if (units == "rad")
return printDegrees(value);
if (units == "nm")
return printNm(value, 1);
if (units == "nm^2")
return printNm(value, 2);
if (units == "nm^3")
return printNm(value, 3);
if (units == "1/nm")
return printNm(value, -1);
if (units.empty())
return printDouble(value);
ASSERT_NEVER;
}
std::string Py::Fmt::printValue(std::variant<double, int> value, const std::string& units /*= ""*/)
{
if (std::holds_alternative<int>(value)) {
ASSERT(units.empty()); // int with units is not supported. Implement when necessary.
return printInt(std::get<int>(value));
}
return printValue(std::get<double>(value), units);
}
std::string Py::Fmt::printString(const std::string& value)
{
std::ostringstream result;
result << "\"" << value << "\"";
return result.str();
}
std::string Py::Fmt::printArguments(const std::vector<std::pair<double, std::string>>& arguments)
{
std::vector<std::string> args;
args.reserve(arguments.size());
for (const auto& argument : arguments)
args.push_back(Py::Fmt::printValue(argument.first, argument.second));
return Base::String::join(args, ", ");
}
std::string Py::Fmt::printFunction(const std::string& name,
const std::vector<std::pair<double, std::string>>& arguments)
{
return name + "(" + printArguments(arguments) + ")";
}
std::string Py::Fmt::printFunction(const std::string& name, double value, const std::string& unit)
{
return printFunction(name, {{value, unit}});
}
std::string Py::Fmt::printFunction(const std::string& name, double value1, const std::string& unit1,
double value2, const std::string& unit2)
{
return printFunction(name, {{value1, unit1}, {value2, unit2}});
}
std::string Py::Fmt::printKvector(const R3 value)
{
std::ostringstream result;
result << "R3(" << printDouble(value.x()) << ", " << printDouble(value.y()) << ", "
<< printDouble(value.z()) << ")";
return result.str();
}
std::string Py::Fmt::indent(size_t width)
{
return std::string(width, ' ');
}
|