File: DiffUtil.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (148 lines) | stat: -rw-r--r-- 5,360 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Device/IO/DiffUtil.cpp
//! @brief     Implements namespace DataUtil.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Device/IO/DiffUtil.h"
#include "Base/Axis/Frame.h"
#include "Base/Axis/Scale.h"
#include "Base/Math/Numeric.h"
#include "Base/Util/Assert.h"
#include "Device/Data/Datafield.h"
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>

namespace {

//! Returns relative difference between two data sets sum(dat[i] - ref[i])/ref[i]).
double meanRelVecDiff(const std::vector<double>& dat, const std::vector<double>& ref)
{
    ASSERT(dat.size() == ref.size());
    double diff = 0;
    for (size_t i = 0; i < dat.size(); ++i) {
        if (ref[i] == 0 && dat[i] == 0)
            continue;
        if (ref[i] == 0 || dat[i] == 0) {
            std::cerr << "check manually at i=" << i << ": ref=" << ref[i] << " vs dat=" << dat[i]
                      << "\n";
            continue;
        }
        diff += Numeric::relativeDifference(dat[i], ref[i]);
    }
    diff /= dat.size();
    ASSERT(std::isfinite(diff));
    return diff;
}

bool checkVecConsistence(const std::vector<double>& dat, const std::vector<double>& ref,
                         double precision, double snr, int allowed_outliers)
{
    ASSERT(dat.size() == ref.size());
    const size_t N = dat.size();
    double max_dat = 0;
    double max_ref = 0;
    for (size_t i = 0; i < N; ++i) {
        max_dat = std::max(max_dat, dat[i]);
        max_ref = std::max(max_ref, ref[i]);
    }
    if (!max_dat) {
        std::cerr << "FAILED: Data are all zero" << std::endl;
        return false;
    }
    if (!max_ref) {
        std::cerr << "FAILED: Reference data are all zero" << std::endl;
        return false;
    }
    const double noise_level = max_ref * snr;
    double max_err = 0;
    size_t i_max = -1;
    int n_outliers = 0;
    for (size_t i = 0; i < N; ++i) {
        double rel_err = std::abs(dat[i] - ref[i]) / (precision * std::abs(ref[i]) + noise_level);
        if (rel_err > 1)
            ++n_outliers;
        if (rel_err > max_err) {
            max_err = rel_err;
            i_max = i;
        }
    }
    if (i_max == size_t(-1)) {
        std::cout << "OK: no disagreement beyond max rel err = " << max_err << std::endl;
        return true;
    } else if (allowed_outliers > 0) {
        if (n_outliers > allowed_outliers) {
            std::cerr << "FAILED: #outliers=" << n_outliers << " vs allowed #=" << allowed_outliers
                      << std::endl;
            return false;
        }
        if (n_outliers > 0) {
            std::cerr << "OK: #outliers=" << n_outliers << " vs allowed #=" << allowed_outliers
                      << std::endl;
            return true;
        }
        // else fall through
    } else if (max_err > 1) {
        std::cerr << "FAILED: Maximum disagreement at i=" << i_max << ", dat=" << dat[i_max]
                  << " vs ref=" << ref[i_max] << " => err_factor=" << max_err << " where "
                  << " precision=" << precision << ", snr=" << snr << std::endl;
        return false;
    }
    std::cout << "OK: Maximum disagreement at i=" << i_max << ", dat=" << dat[i_max]
              << " vs ref=" << ref[i_max] << " => err_factor=" << max_err << " where "
              << " precision=" << precision << ", snr=" << snr << std::endl;
    return true;
}

} // namespace


bool DiffUtil::checkRelVecDifference(const std::vector<double>& dat, const std::vector<double>& ref,
                                     double threshold)
{
    ASSERT(dat.size() == ref.size());
    if (*std::min_element(dat.begin(), dat.end()) == 0
        && *std::max_element(dat.begin(), dat.end()) == 0) {
        std::cerr << "FAILED: simulated data set is empty" << std::endl;
        return false;
    }

    try {
        const double diff = ::meanRelVecDiff(dat, ref);
        if (diff > threshold) {
            std::cerr << "FAILED: relative deviation of dat from ref is " << diff
                      << ", above given threshold " << threshold << std::endl;
            return false;
        }
        if (diff)
            std::cerr << "- OK: relative deviation of dat from ref is " << diff
                      << ", within given threshold " << threshold << std::endl;
        else
            std::cout << "- OK: dat = ref\n";
        return true;
    } catch (...) {
        return false;
    }
}

bool DiffUtil::checkRelativeDifference(const Datafield& dat, const Datafield& ref, double threshold)
{
    return checkRelVecDifference(dat.flatVector(), ref.flatVector(), threshold);
}

bool DiffUtil::checkConsistence(const Datafield& dat, const Datafield& ref, double precision,
                                double snr, int allowed_outliers)
{
    return ::checkVecConsistence(dat.flatVector(), ref.flatVector(), precision, snr,
                                 allowed_outliers);
}