1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Device/IO/ReadWriteTiff.cpp
//! @brief Implements functions readTiff, writeTiff.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#ifdef BA_TIFF_SUPPORT
#include "Device/IO/ReadWriteTiff.h"
#include "Base/Axis/Frame.h"
#include "Base/Axis/MakeScale.h"
#include "Base/Axis/Scale.h"
#include "Base/Util/Assert.h"
#include "Base/Util/SysUtil.h"
#include "Device/Data/Datafield.h"
#include <cstring> // memcpy
#include <memory>
#include <sstream>
#include <tiffio.h>
#include <tiffio.hxx>
namespace {
const std::string ref_to_doc =
"\n\nThe TIFF format requirements can be found in the web documentation.";
} // namespace
Datafield Util::RW::readTiff(std::istream& input_stream)
{
// Update webdoc page about tiff requirements if they are changed.
TIFF* tiffstream = TIFFStreamOpen("MemTIFF", &input_stream);
if (!tiffstream)
throw std::runtime_error("Cannot open the TIFF file" + ref_to_doc);
//... Read header.
std::ostringstream message;
message << "Cannot read TIFF file:" << std::endl;
uint32_t w, h;
if (!TIFFGetField(tiffstream, TIFFTAG_IMAGEWIDTH, &w)
|| !TIFFGetField(tiffstream, TIFFTAG_IMAGELENGTH, &h)) {
message << "missing width/height in header" << ref_to_doc << std::endl;
throw std::runtime_error(message.str());
}
// BitsPerSample defaults to 1 according to the TIFF spec.
uint16_t bitsPerSample;
if (!TIFFGetField(tiffstream, TIFFTAG_BITSPERSAMPLE, &bitsPerSample))
bitsPerSample = 1;
if (8 != bitsPerSample && 16 != bitsPerSample && 32 != bitsPerSample) {
message << " TIFFTAG_BITSPERSAMPLE: " << bitsPerSample << std::endl
<< "Only 8, 16 or 32 bits per sample are allowed." << ref_to_doc << std::endl;
throw std::runtime_error(message.str());
}
// they may be e.g. grayscale with 2 samples per pixel
uint16_t samplesPerPixel;
if (!TIFFGetField(tiffstream, TIFFTAG_SAMPLESPERPIXEL, &samplesPerPixel))
samplesPerPixel = 1;
if (samplesPerPixel != 1) {
message << " TIFFTAG_SAMPLESPERPIXEL: " << samplesPerPixel << std::endl
<< "Only 1 sample per pixel (channel) is allowed." << ref_to_doc << std::endl;
throw std::runtime_error(message.str());
}
uint16_t sampleFormat;
if (!TIFFGetField(tiffstream, TIFFTAG_SAMPLEFORMAT, &sampleFormat))
sampleFormat = 1;
switch (sampleFormat) {
case 1: // unsigned int
case 2: // signed int
break;
case 3: // IEEE float
if (32 != bitsPerSample) {
message
<< " TIFFTAG_BITSPERSAMPLE: " << bitsPerSample << std::endl
<< " TIFFTAG_SAMPLEFORMAT: " << sampleFormat << std::endl
<< "Only 32 bits per sample are allowed for IEEE float format (sample format = 3)."
<< ref_to_doc << std::endl;
throw std::runtime_error(message.str());
}
break;
default:
message << " TIFFTAG_SAMPLEFORMAT: " << sampleFormat << std::endl
<< "Only value 1, 2 or 3 is allowed." << ref_to_doc << std::endl;
throw std::runtime_error(message.str());
}
//... Read data.
ASSERT(0 == bitsPerSample % 8);
uint16_t bytesPerSample = bitsPerSample / 8;
tmsize_t buf_size = TIFFScanlineSize(tiffstream);
tmsize_t expected_size = bytesPerSample * w;
if (buf_size != expected_size)
throw std::runtime_error("Cannot read TIFF file: wrong scanline size" + ref_to_doc);
tdata_t const buf = _TIFFmalloc(buf_size); // tdata_t is void*
if (!buf)
throw std::runtime_error("Cannot read TIFF file: failed allocating buffer" + ref_to_doc);
Datafield data(std::vector<const Scale*>{newEquiDivision("u (bin)", w, 0.0, double(w)),
newEquiDivision("v (bin)", h, 0.0, double(h))});
std::vector<int8_t> line_buf;
line_buf.resize(buf_size, 0);
for (uint32_t row = 0; row < h; row++) {
if (TIFFReadScanline(tiffstream, buf, row) < 0)
throw std::runtime_error("Cannot read TIFF file: error in scanline." + ref_to_doc);
memcpy(line_buf.data(), buf, buf_size);
for (unsigned col = 0; col < w; ++col) {
void* incoming = &line_buf[col * bytesPerSample];
double sample = 0;
switch (sampleFormat) {
case 1: // unsigned int
switch (bitsPerSample) {
case 8:
sample = *reinterpret_cast<uint8_t*>(incoming);
break;
case 16:
sample = *reinterpret_cast<uint16_t*>(incoming);
break;
case 32:
sample = *reinterpret_cast<uint32_t*>(incoming);
break;
default:
throw std::runtime_error("Corrupted TIFF file");
}
break;
case 2: // signed int
switch (bitsPerSample) {
case 8:
sample = *reinterpret_cast<int8_t*>(incoming);
break;
case 16:
sample = *reinterpret_cast<int16_t*>(incoming);
break;
case 32:
sample = *reinterpret_cast<int32_t*>(incoming);
break;
default:
throw std::runtime_error("Corrupted TIFF file");
}
break;
case 3: // IEEE float
sample = double(*reinterpret_cast<float*>(incoming));
break;
default:
throw std::runtime_error("Cannot read TIFF file: unexpected sample format"
+ ref_to_doc);
}
data[(h - 1 - row) * w + col] = sample;
}
}
_TIFFfree(buf);
TIFFClose(tiffstream);
return data;
}
void Util::RW::writeTiff(const Datafield& data, std::ostream& output_stream)
{
if (data.rank() != 2)
throw std::runtime_error("Cannot write TIFF file: unsupported data rank");
TIFF* tiffstream = TIFFStreamOpen("MemTIFF", &output_stream);
ASSERT(tiffstream);
const size_t m_width = data.axis(0).size();
const size_t m_height = data.axis(1).size(); // this does not exist for 1d data
//... Write header.
TIFFSetField(tiffstream, TIFFTAG_ARTIST, "BornAgain.IOFactory");
TIFFSetField(tiffstream, TIFFTAG_DATETIME, Base::System::getCurrentDateAndTime().c_str());
TIFFSetField(tiffstream, TIFFTAG_IMAGEDESCRIPTION,
"Image converted from BornAgain intensity file.");
TIFFSetField(tiffstream, TIFFTAG_SOFTWARE, "BornAgain");
const auto width = static_cast<uint32_t>(m_width);
const auto height = static_cast<uint32_t>(m_height);
TIFFSetField(tiffstream, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(tiffstream, TIFFTAG_IMAGELENGTH, height);
// output format, hardcoded here
const uint16_t bitPerSample = 32;
const uint16_t samplesPerPixel = 1;
TIFFSetField(tiffstream, TIFFTAG_BITSPERSAMPLE, bitPerSample);
TIFFSetField(tiffstream, TIFFTAG_SAMPLESPERPIXEL, samplesPerPixel);
TIFFSetField(tiffstream, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISWHITE);
//... Write data.
using sample_t = int;
const tmsize_t buf_size = sizeof(sample_t) * m_width;
const tdata_t buf = _TIFFmalloc(buf_size);
if (!buf)
throw std::runtime_error("Cannot write TIFF file: failed allocating buffer");
std::vector<sample_t> line_buf;
line_buf.resize(m_width, 0);
for (unsigned row = 0; row < (uint32_t)m_height; row++) {
for (unsigned col = 0; col < line_buf.size(); ++col)
line_buf[col] = static_cast<sample_t>(data[(m_height - 1 - row) * m_width + col]);
memcpy(buf, line_buf.data(), buf_size);
if (TIFFWriteScanline(tiffstream, buf, row) < 0)
throw std::runtime_error("Cannot write TIFF file: error in TIFFWriteScanline");
}
_TIFFfree(buf);
TIFFFlush(tiffstream);
TIFFClose(tiffstream);
}
#endif // BA_TIFF_SUPPORT
|