File: Convolve.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (279 lines) | stat: -rw-r--r-- 9,326 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Device/Resolution/Convolve.cpp
//! @brief     Implements class Convolve.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Device/Resolution/Convolve.h"
#include "Base/Util/Assert.h"

namespace {

// Returns a true if number can be factorized using only favorite fftw3 factors
bool is_optimal(int n)
{
    static const std::vector<int> favored_factors{13, 11, 7, 5, 3, 2};
    if (n == 1)
        return false;
    size_t ntest = n;
    for (int favored_factor : favored_factors)
        while ((ntest % favored_factor) == 0)
            ntest = ntest / favored_factor;
    return ntest == 1;
}

// Returns next higher number that has only favored prime factors
int find_closest_factor(int n)
{
    while (!is_optimal(n))
        ++n;
    return n;
}

} // namespace


Convolve::Convolve()
    : m_mode(FFTW_LINEAR_SAME)
{
}

Convolve::Workspace::~Workspace()
{
    clear();
}

void Convolve::Workspace::clear()
{
    h_src = 0;
    w_src = 0;
    h_kernel = 0;
    w_kernel = 0;

    delete[] in_src;
    in_src = nullptr;

    if (out_src)
        fftw_free((fftw_complex*)out_src);
    out_src = nullptr;


    delete[] in_kernel;
    in_kernel = nullptr;

    if (out_kernel)
        fftw_free((fftw_complex*)out_kernel);
    out_kernel = nullptr;


    delete[] dst_fft;
    dst_fft = nullptr;

    h_offset = 0;
    w_offset = 0;

    if (p_forw_src != nullptr)
        fftw_destroy_plan(p_forw_src);
    if (p_forw_kernel != nullptr)
        fftw_destroy_plan(p_forw_kernel);
    if (p_back != nullptr)
        fftw_destroy_plan(p_back);

    fftw_cleanup();
}

void Convolve::fftconvolve2D(const double2d_t& source, const double2d_t& kernel, double2d_t& result)
{
    int h_src = (int)source.size();
    int w_src = (int)(!source.empty() ? source[0].size() : 0);
    int h_kernel = (int)kernel.size();
    int w_kernel = (!kernel.empty() ? (int)kernel[0].size() : 0);

    // initialization
    init(h_src, w_src, h_kernel, w_kernel);
    // Compute the circular convolution
    fftw_circular_convolution(source, kernel);

    // results
    result.clear();
    result.resize(ws.h_dst);
    for (int i = 0; i < ws.h_dst; i++) {
        result[i].resize(ws.w_dst, 0);
        for (int j = 0; j < ws.w_dst; j++) {
            // result[i][j]=ws.dst[i*ws.w_dst+j];
            if (m_mode == FFTW_CIRCULAR_SAME_SHIFTED)
                result[i][j] = ws.dst_fft[((i + int(ws.h_kernel / 2.0)) % ws.h_fftw) * ws.w_fftw
                                          + (j + int(ws.w_kernel / 2.0)) % ws.w_fftw];
            else
                result[i][j] = ws.dst_fft[(i + ws.h_offset) * ws.w_fftw + j + ws.w_offset];
        }
    }
}

void Convolve::fftconvolve1D(const std::vector<double>& source, const std::vector<double>& kernel,
                             std::vector<double>& result)
{
    // we simply create 2d arrays with length of first dimension equal to 1, and call 2d convolution
    double2d_t source2d, kernel2d;
    source2d.push_back(source);
    kernel2d.push_back(kernel);

    double2d_t result2d;
    fftconvolve2D(source2d, kernel2d, result2d);
    ASSERT(result2d.size() == 1);
    result = result2d[0];
}

void Convolve::init(int h_src, int w_src, int h_kernel, int w_kernel)
{
    ASSERT(h_src);
    ASSERT(w_src);
    ASSERT(h_kernel);
    ASSERT(w_kernel);

    ws.clear();
    ws.h_src = h_src;
    ws.w_src = w_src;
    ws.h_kernel = h_kernel;
    ws.w_kernel = w_kernel;
    switch (m_mode) {
    case FFTW_LINEAR_FULL:
        // Full Linear convolution
        ws.h_fftw = find_closest_factor(h_src + h_kernel - 1);
        ws.w_fftw = find_closest_factor(w_src + w_kernel - 1);
        ws.h_dst = h_src + h_kernel - 1;
        ws.w_dst = w_src + w_kernel - 1;
        // Here we just keep the first [0:h_dst-1 ; 0:w_dst-1] real part elements of out_src
        ws.h_offset = 0;
        ws.w_offset = 0;
        break;
    case FFTW_LINEAR_SAME_UNPADDED:
        // Same Linear convolution
        ws.h_fftw = h_src + int(h_kernel / 2.0);
        ws.w_fftw = w_src + int(w_kernel / 2.0);
        ws.h_dst = h_src;
        ws.w_dst = w_src;
        // Here we just keep the first [h_filt/2:h_filt/2+h_dst-1 ; w_filt/2:w_filt/2+w_dst-1]
        // real part elements of out_src
        ws.h_offset = int(ws.h_kernel / 2.0);
        ws.w_offset = int(ws.w_kernel / 2.0);
        break;
    case FFTW_LINEAR_SAME:
        // Same Linear convolution
        ws.h_fftw = find_closest_factor(h_src + int(h_kernel / 2.0));
        ws.w_fftw = find_closest_factor(w_src + int(w_kernel / 2.0));
        ws.h_dst = h_src;
        ws.w_dst = w_src;
        // Here we just keep the first [h_filt/2:h_filt/2+h_dst-1 ; w_filt/2:w_filt/2+w_dst-1]
        // real part elements of out_src
        ws.h_offset = int(ws.h_kernel / 2.0);
        ws.w_offset = int(ws.w_kernel / 2.0);
        break;
    case FFTW_LINEAR_VALID:
        // Valid Linear convolution
        ASSERT(ws.h_kernel <= ws.h_src);
        ASSERT(ws.w_kernel <= ws.w_src);
        ws.h_fftw = find_closest_factor(h_src);
        ws.w_fftw = find_closest_factor(w_src);
        ws.h_dst = h_src - h_kernel + 1;
        ws.w_dst = w_src - w_kernel + 1;
        // Here we just take [h_dst x w_dst] elements starting at [h_kernel-1;w_kernel-1]
        ws.h_offset = ws.h_kernel - 1;
        ws.w_offset = ws.w_kernel - 1;
        break;
    case FFTW_CIRCULAR_SAME:
    case FFTW_CIRCULAR_SAME_SHIFTED:
        // Circular convolution, modulo N
        // We don't padd with zeros because if we do, we need to padd with at least h_kernel/2;
        // w_kernel/2 elements plus the wrapp around, which in facts leads to too much
        // computations compared to the gain obtained with the optimal size
        ws.h_fftw = h_src;
        ws.w_fftw = w_src;
        ws.h_dst = h_src;
        ws.w_dst = w_src;
        // We copy the first [0:h_dst-1 ; 0:w_dst-1] real part elements of out_src
        ws.h_offset = 0;
        ws.w_offset = 0;
        break;
    default:
        ASSERT_NEVER;
    }

    ws.in_src = new double[ws.h_fftw * ws.w_fftw];
    ws.out_src = (double*)fftw_malloc(sizeof(fftw_complex) * ws.h_fftw * (ws.w_fftw / 2 + 1));
    ws.in_kernel = new double[ws.h_fftw * ws.w_fftw];
    ws.out_kernel = (double*)fftw_malloc(sizeof(fftw_complex) * ws.h_fftw * (ws.w_fftw / 2 + 1));

    ws.dst_fft = new double[ws.h_fftw * ws.w_fftw];
    // ws.dst = new double[ws.h_dst * ws.w_dst];

    // Initialization of the plans
    ws.p_forw_src = fftw_plan_dft_r2c_2d(ws.h_fftw, ws.w_fftw, ws.in_src, (fftw_complex*)ws.out_src,
                                         FFTW_ESTIMATE);
    ASSERT(ws.p_forw_src);
    ws.p_forw_kernel = fftw_plan_dft_r2c_2d(ws.h_fftw, ws.w_fftw, ws.in_kernel,
                                            (fftw_complex*)ws.out_kernel, FFTW_ESTIMATE);
    ASSERT(ws.p_forw_kernel);

    // The backward FFT takes ws.out_kernel as input
    ws.p_back = fftw_plan_dft_c2r_2d(ws.h_fftw, ws.w_fftw, (fftw_complex*)ws.out_kernel, ws.dst_fft,
                                     FFTW_ESTIMATE);
    ASSERT(ws.p_back);
}

void Convolve::fftw_circular_convolution(const double2d_t& src, const double2d_t& kernel)
{
    ASSERT(ws.h_fftw > 0);
    ASSERT(ws.w_fftw > 0);

    double *ptr, *ptr_end, *ptr2;

    // Reset the content of ws.in_src
    for (ptr = ws.in_src, ptr_end = ws.in_src + ws.h_fftw * ws.w_fftw; ptr != ptr_end; ++ptr)
        *ptr = 0.0;
    for (ptr = ws.in_kernel, ptr_end = ws.in_kernel + ws.h_fftw * ws.w_fftw; ptr != ptr_end; ++ptr)
        *ptr = 0.0;

    // Then we build our periodic signals
    // ptr = src;
    for (int i = 0; i < ws.h_src; ++i)
        for (int j = 0; j < ws.w_src; ++j, ++ptr)
            ws.in_src[(i % ws.h_fftw) * ws.w_fftw + (j % ws.w_fftw)] += src[i][j];

    // ptr = kernel;
    for (int i = 0; i < ws.h_kernel; ++i)
        for (int j = 0; j < ws.w_kernel; ++j, ++ptr)
            ws.in_kernel[(i % ws.h_fftw) * ws.w_fftw + (j % ws.w_fftw)] += kernel[i][j];

    // And we compute their packed FFT
    fftw_execute(ws.p_forw_src);
    fftw_execute(ws.p_forw_kernel);

    // Compute the element-wise product on the packed terms
    // Let's put the elementwise products in ws.in_kernel
    for (ptr = ws.out_src, ptr2 = ws.out_kernel,
        ptr_end = ws.out_src + 2 * ws.h_fftw * (ws.w_fftw / 2 + 1);
         ptr != ptr_end; ++ptr, ++ptr2) {
        double re_s = *ptr;
        double im_s = *(++ptr);
        double re_k = *ptr2;
        double im_k = *(++ptr2);
        *(ptr2 - 1) = re_s * re_k - im_s * im_k;
        *ptr2 = re_s * im_k + im_s * re_k;
    }

    // Compute the backward FFT
    // Carefull, The backward FFT does not preserve the output
    fftw_execute(ws.p_back);
    // Scale the transform
    for (ptr = ws.dst_fft, ptr_end = ws.dst_fft + ws.w_fftw * ws.h_fftw; ptr != ptr_end; ++ptr)
        *ptr /= double(ws.h_fftw * ws.w_fftw);
}