File: AvgeParticles.tex

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (199 lines) | stat: -rw-r--r-- 7,881 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
\documentclass[11pt,a4paper,fleqn]{report}

\usepackage{amssymb,amsmath,bm}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage[top=3cm, left=3cm, bottom=3cm, right=3cm]{geometry}

\def\version{0}
\def\shorttitle{Potential Chapter of BornAgain Physics Reference}
\def\longtitle{\shorttitle}

\input{Setup}

\hyphenation{
Born-Again
equi-dis-tant
Laz-za-ri
MacOS
nano-par-ti-cle nano-par-ti-cles
para-crys-tal
wave-num-ber
Wuttke}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\input{/G/sw/ba/Doc/PhysRef/Macros.tex}
\def\AVG<#1>{\left\langle#1\right\rangle}
\def\transpose{\mathsf{T}}

\noindent
\textbf{{\huge Form factors averaged over particle sizes and orientations}}\\[1cm]
{\large Incomplete or withdrawn chapter of Physics Reference\\
Joachim Wuttke\\
Scientific Computing Group of JCNS-MLZ}\\[.5cm]
Last change \today.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{TODO}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%==================================================================================================%
\subsection{Literature}
%==================================================================================================%

Schulz distribution \cite{ArPe76,KoCH83}

Orientational averages:
sphere, rod, disk \cite{ArPe76}
spheroid (approximative) \cite{KoCH83}.

Porod limit \cite{Por51}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%==================================================================================================%
\subsection{General formalism for form factor averages}\label{Sffa}
%==================================================================================================%

The \emph{form factor amplitude} of particle~$\Pi$ at wave vector~$\q$ is
\begin{equation}
  F(\q) \coloneqq \int_\Pi\!\d^3r\,\e^{i\q\r}.
\end{equation}
Its squared modulus shall be designated as \emph{form factor intensity},
\begin{equation}
  P(\q) \coloneqq {\left|F(\q)\right|}^2.
\end{equation}
The scattering of a particles mixture depends on the averages $\AVG<F(\q)>^2$
and $\AVG<P(\q)>$.

Förster et al \cite{WaFo23}
studied averages under a distribution~$h(R)$ of the particle size~$R$
and a distribution $f(\Omega)$ of the particle orientation~$\Omega$,
\begin{equation}
  \AVG<A(\Pi)>_{R,\Omega}
  \coloneqq \int_0^\infty\!\d R\,h(R) \int_{4\pi} \!\d\Omega\, f(\Omega)\,A(\Pi(R,\Omega)).
\end{equation}
Here we generalize, and at the same time simplify notation,
by considering an operator~$\Gamma$ with associated matrix~$\v\Gamma$
that may rotate, stretch, or deform a simpler geometric body~$\Pi$,
\begin{equation}
  \Gamma\Pi \coloneqq \{ \r \;|\; \v\Gamma^{-1}\r \in \Pi \}.
\end{equation}
Let $\v\Gamma$ have the distribution~$g(\v\Gamma)$.
The average form factor amplitude is
\begin{align}
  \AVG<F(\q;\Gamma\Pi)>_\Gamma
      &= \int\!\d\Gamma\,g(\v\Gamma)\,\int_{\Gamma\Pi}\!\d^3r\,\e^{i\q\r}\\
      &= \int\!\d\Gamma\,g(\v\Gamma)\,\int_\Pi\!\d^3r'\,
                  |\v\Gamma|\e^{i\q\v\Gamma\r'}\label{EFqTraf2}\\
      &= \int\!\d\Gamma\,g(\v\Gamma)\,|\v\Gamma|\,F(\v\Gamma^\transpose\q;\Pi).\label{EFqTraf3}
\end{align}
By the same reasoning,
the average form factor intensity is
\begin{equation}
  \AVG<P(\q)>_\Gamma
    = \int\!\d\Gamma\,g(\v\Gamma)\,{\left|F(\v\Gamma^\transpose\q;\Pi)\right|}^2.
\end{equation}

%==================================================================================================%
\subsection{Size distribution}
%==================================================================================================%

The particle size~$R$ shall be quantified by its ratio
\begin{equation}
  \rho \coloneqq R/ R_0
\end{equation}
relative to a reference size~$R_0$.
In the formalism of \cref{Sffa},
this is described by the matrix
\begin{equation}
  \v\Gamma_\rho = \rho\v1,
\end{equation}
which transforms a particle $\Pi$ of size~$R_0$ into a particle~$\v\Gamma_\rho\Pi$ of size~$R$.
It contributes a factor $|\v\Gamma_\rho|=\rho^3$ to the substitution~\cref{EFqTraf2}.
If the form factor amplitude is~$F_\Pi(\q)$ for the reference particle,
then its average under the size distribution is
\begin{equation}\label{FqAvg1}
  \AVG<F(\q;\Gamma_\rho\Pi)>_\rho
      = \int\!\d\rho\,\rho^3\,h(\rho)\,F(\rho \q;\Pi).
\end{equation}
Averages over particle sizes can easily be combined with averages over particle orientations
because $\v\Gamma$ is just a multiple of the unit matrix
and therefore commutes with any other matrix.

%==================================================================================================%
\subsection{Gamma distribution}
%==================================================================================================%

From here on, we need to assume a specific distribution~$h$.
Following Refs \cite{WaFo23}, we choose the Schulz-Zimm distribution
\begin{equation}
  h(\rho) \equiv p_\gamma(\rho;\kappa,\kappa),
\end{equation}
which is just a gamma distribution
\begin{equation}
  p_\gamma(x;\alpha,\beta)
  \coloneqq \frac{\beta^\alpha}{\Gamma(\alpha)}
       x^{\alpha - 1} e^{-\beta x},
\end{equation}
scaled such that $\AVG<\rho>=\alpha/\beta=1$.
It has the variance $\alpha/\beta^2=1/\kappa$.
In polymer physics, it is parameterized through the dispersity
$z\coloneqq\AVG<\rho^2>=1+1/\kappa$.

Straightforward computation yields the average
\begin{equation}\label{EavgeXE}
  \AVG<x^m \e^{i\eta x}>
  = \frac{\Gamma(\alpha+m)}{\Gamma(\alpha)}\frac{\beta^\alpha}{(\beta-i\eta)^{\alpha+m}}
  = \alpha^{\overline{m}}\frac{\beta^\alpha}{(\beta-i\eta)^{\alpha+m}}
  = \frac{\alpha^{\overline{m}}}{\beta^m}\frac{1}{(1-i\eta/\beta)^{\alpha+m}}
\end{equation}
with the raising factorial $a^{\overline{n}}\coloneqq a(a+1)\cdots(a+n-1)$.

%==================================================================================================%
\subsection{Sphere}
%==================================================================================================%

The form factor of a sphere with radius~$R$ is
\begin{equation}
  F(q; R) = \frac{4\pi}{q^3} \tilde F(qR)
\end{equation}
with
\begin{equation}
  \tilde F(x) = \sin x - x \cos x.
\end{equation}
To make contact with Ref.~\cite{WaFo23}, we note that
$\tilde F(x)= x^2 j_1(x)$ with the spherical Bessel function
\begin{equation}
  j_1(x) \equiv \sqrt{\frac{\pi}{2x}}J_{3/2}(x) = \frac{\sin x - x \cos x}{x^2},
\end{equation}
which can also be expressed as generalized hypergeometric series $\vphantom{F}_0F_1(5/2;\cdot)$.

The average form factor amplitude \cref{FqAvg1} is
\begin{align}
  \AVG<F(\q;\Gamma_\rho\Pi)>_\rho
     &= \frac{4\pi}{q^{3}}\int\!\d \rho\,p_\gamma(\rho;\kappa,\kappa)\,\tilde F(\rho q R_0)\\
     &= -\frac{4\pi}{q^{3}} \Re \int\!\d \rho\,p_\gamma(\rho;\kappa,\kappa)\,
              \left(i\e^{i\rho q R_0} + (\rho q R_0)\e^{i\rho q R_0} \right),
\end{align}
which has the right form to apply~\cref{EavgeXE}:
\begin{align}
  \AVG<F(\q;\Gamma_\rho\Pi)>_\rho
     &= - \frac{4\pi}{q^{3}} \Re \left[\frac{i}{\left(1-iqR_0/\kappa\right)^\kappa}
                + \frac{1}{\left(1-iqR_0/\kappa\right)^{\kappa+1}}\right]\\
&= - \frac{4\pi}{q^{3}} \Re  \frac{i+(\kappa+1)qR_0/\kappa}{(1-iqR_0/\kappa)^{\kappa+1}}.
\end{align}

%==================================================================================================%
%\subsection{}
%==================================================================================================%

\bibliographystyle{switch}
\bibliography{jw7}

\end{document}