1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
\documentclass[11pt,a4paper,fleqn]{report}
\usepackage{amssymb,amsmath,bm}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage[top=3cm, left=3cm, bottom=3cm, right=3cm]{geometry}
\def\version{0}
\def\shorttitle{Potential Chapter of BornAgain Physics Reference}
\def\longtitle{\shorttitle}
\input{Setup}
\hyphenation{
Born-Again
equi-dis-tant
Laz-za-ri
MacOS
nano-par-ti-cle nano-par-ti-cles
para-crys-tal
wave-num-ber
Wuttke}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\input{/G/sw/ba/Doc/PhysRef/Macros.tex}
\def\AVG<#1>{\left\langle#1\right\rangle}
\def\transpose{\mathsf{T}}
\noindent
\textbf{{\huge Form factors averaged over particle sizes and orientations}}\\[1cm]
{\large Incomplete or withdrawn chapter of Physics Reference\\
Joachim Wuttke\\
Scientific Computing Group of JCNS-MLZ}\\[.5cm]
Last change \today.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{TODO}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%==================================================================================================%
\subsection{Literature}
%==================================================================================================%
Schulz distribution \cite{ArPe76,KoCH83}
Orientational averages:
sphere, rod, disk \cite{ArPe76}
spheroid (approximative) \cite{KoCH83}.
Porod limit \cite{Por51}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%==================================================================================================%
\subsection{General formalism for form factor averages}\label{Sffa}
%==================================================================================================%
The \emph{form factor amplitude} of particle~$\Pi$ at wave vector~$\q$ is
\begin{equation}
F(\q) \coloneqq \int_\Pi\!\d^3r\,\e^{i\q\r}.
\end{equation}
Its squared modulus shall be designated as \emph{form factor intensity},
\begin{equation}
P(\q) \coloneqq {\left|F(\q)\right|}^2.
\end{equation}
The scattering of a particles mixture depends on the averages $\AVG<F(\q)>^2$
and $\AVG<P(\q)>$.
Förster et al \cite{WaFo23}
studied averages under a distribution~$h(R)$ of the particle size~$R$
and a distribution $f(\Omega)$ of the particle orientation~$\Omega$,
\begin{equation}
\AVG<A(\Pi)>_{R,\Omega}
\coloneqq \int_0^\infty\!\d R\,h(R) \int_{4\pi} \!\d\Omega\, f(\Omega)\,A(\Pi(R,\Omega)).
\end{equation}
Here we generalize, and at the same time simplify notation,
by considering an operator~$\Gamma$ with associated matrix~$\v\Gamma$
that may rotate, stretch, or deform a simpler geometric body~$\Pi$,
\begin{equation}
\Gamma\Pi \coloneqq \{ \r \;|\; \v\Gamma^{-1}\r \in \Pi \}.
\end{equation}
Let $\v\Gamma$ have the distribution~$g(\v\Gamma)$.
The average form factor amplitude is
\begin{align}
\AVG<F(\q;\Gamma\Pi)>_\Gamma
&= \int\!\d\Gamma\,g(\v\Gamma)\,\int_{\Gamma\Pi}\!\d^3r\,\e^{i\q\r}\\
&= \int\!\d\Gamma\,g(\v\Gamma)\,\int_\Pi\!\d^3r'\,
|\v\Gamma|\e^{i\q\v\Gamma\r'}\label{EFqTraf2}\\
&= \int\!\d\Gamma\,g(\v\Gamma)\,|\v\Gamma|\,F(\v\Gamma^\transpose\q;\Pi).\label{EFqTraf3}
\end{align}
By the same reasoning,
the average form factor intensity is
\begin{equation}
\AVG<P(\q)>_\Gamma
= \int\!\d\Gamma\,g(\v\Gamma)\,{\left|F(\v\Gamma^\transpose\q;\Pi)\right|}^2.
\end{equation}
%==================================================================================================%
\subsection{Size distribution}
%==================================================================================================%
The particle size~$R$ shall be quantified by its ratio
\begin{equation}
\rho \coloneqq R/ R_0
\end{equation}
relative to a reference size~$R_0$.
In the formalism of \cref{Sffa},
this is described by the matrix
\begin{equation}
\v\Gamma_\rho = \rho\v1,
\end{equation}
which transforms a particle $\Pi$ of size~$R_0$ into a particle~$\v\Gamma_\rho\Pi$ of size~$R$.
It contributes a factor $|\v\Gamma_\rho|=\rho^3$ to the substitution~\cref{EFqTraf2}.
If the form factor amplitude is~$F_\Pi(\q)$ for the reference particle,
then its average under the size distribution is
\begin{equation}\label{FqAvg1}
\AVG<F(\q;\Gamma_\rho\Pi)>_\rho
= \int\!\d\rho\,\rho^3\,h(\rho)\,F(\rho \q;\Pi).
\end{equation}
Averages over particle sizes can easily be combined with averages over particle orientations
because $\v\Gamma$ is just a multiple of the unit matrix
and therefore commutes with any other matrix.
%==================================================================================================%
\subsection{Gamma distribution}
%==================================================================================================%
From here on, we need to assume a specific distribution~$h$.
Following Refs \cite{WaFo23}, we choose the Schulz-Zimm distribution
\begin{equation}
h(\rho) \equiv p_\gamma(\rho;\kappa,\kappa),
\end{equation}
which is just a gamma distribution
\begin{equation}
p_\gamma(x;\alpha,\beta)
\coloneqq \frac{\beta^\alpha}{\Gamma(\alpha)}
x^{\alpha - 1} e^{-\beta x},
\end{equation}
scaled such that $\AVG<\rho>=\alpha/\beta=1$.
It has the variance $\alpha/\beta^2=1/\kappa$.
In polymer physics, it is parameterized through the dispersity
$z\coloneqq\AVG<\rho^2>=1+1/\kappa$.
Straightforward computation yields the average
\begin{equation}\label{EavgeXE}
\AVG<x^m \e^{i\eta x}>
= \frac{\Gamma(\alpha+m)}{\Gamma(\alpha)}\frac{\beta^\alpha}{(\beta-i\eta)^{\alpha+m}}
= \alpha^{\overline{m}}\frac{\beta^\alpha}{(\beta-i\eta)^{\alpha+m}}
= \frac{\alpha^{\overline{m}}}{\beta^m}\frac{1}{(1-i\eta/\beta)^{\alpha+m}}
\end{equation}
with the raising factorial $a^{\overline{n}}\coloneqq a(a+1)\cdots(a+n-1)$.
%==================================================================================================%
\subsection{Sphere}
%==================================================================================================%
The form factor of a sphere with radius~$R$ is
\begin{equation}
F(q; R) = \frac{4\pi}{q^3} \tilde F(qR)
\end{equation}
with
\begin{equation}
\tilde F(x) = \sin x - x \cos x.
\end{equation}
To make contact with Ref.~\cite{WaFo23}, we note that
$\tilde F(x)= x^2 j_1(x)$ with the spherical Bessel function
\begin{equation}
j_1(x) \equiv \sqrt{\frac{\pi}{2x}}J_{3/2}(x) = \frac{\sin x - x \cos x}{x^2},
\end{equation}
which can also be expressed as generalized hypergeometric series $\vphantom{F}_0F_1(5/2;\cdot)$.
The average form factor amplitude \cref{FqAvg1} is
\begin{align}
\AVG<F(\q;\Gamma_\rho\Pi)>_\rho
&= \frac{4\pi}{q^{3}}\int\!\d \rho\,p_\gamma(\rho;\kappa,\kappa)\,\tilde F(\rho q R_0)\\
&= -\frac{4\pi}{q^{3}} \Re \int\!\d \rho\,p_\gamma(\rho;\kappa,\kappa)\,
\left(i\e^{i\rho q R_0} + (\rho q R_0)\e^{i\rho q R_0} \right),
\end{align}
which has the right form to apply~\cref{EavgeXE}:
\begin{align}
\AVG<F(\q;\Gamma_\rho\Pi)>_\rho
&= - \frac{4\pi}{q^{3}} \Re \left[\frac{i}{\left(1-iqR_0/\kappa\right)^\kappa}
+ \frac{1}{\left(1-iqR_0/\kappa\right)^{\kappa+1}}\right]\\
&= - \frac{4\pi}{q^{3}} \Re \frac{i+(\kappa+1)qR_0/\kappa}{(1-iqR_0/\kappa)^{\kappa+1}}.
\end{align}
%==================================================================================================%
%\subsection{}
%==================================================================================================%
\bibliographystyle{switch}
\bibliography{jw7}
\end{document}
|