1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Fit/Adapter/MinimizerAdapter.cpp
//! @brief Implements class MinimizerAdapter.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Fit/Adapter/MinimizerAdapter.h"
#include "Fit/Adapter/ObjectiveFunctionAdapter.h"
#include "Fit/Adapter/Report.h"
#include "Fit/Residual/RootResidualFunction.h"
#include "Fit/Residual/RootScalarFunction.h"
#include "Fit/Tool/StringUtil.h"
#include <Math/Minimizer.h>
#include <utility>
using namespace mumufit;
MinimizerAdapter::MinimizerAdapter(const MinimizerInfo& minimizerInfo)
: m_minimizer_info(minimizerInfo)
, m_adapter(new mumufit::ObjectiveFunctionAdapter)
, m_status(false)
{
}
MinimizerAdapter::~MinimizerAdapter() = default;
MinimizerResult MinimizerAdapter::minimize_scalar(fcn_scalar_t fcn, Parameters parameters)
{
// Genetic minimizer requires SetFunction before setParameters, others don't care
rootMinimizer()->SetFunction(*m_adapter->rootObjectiveFunction(fcn, parameters));
return minimize(parameters);
}
MinimizerResult MinimizerAdapter::minimize_residual(fcn_residual_t fcn, Parameters parameters)
{
// Genetic minimizer requires SetFunction before setParameters, others don't care
rootMinimizer()->SetFunction(*m_adapter->rootResidualFunction(fcn, parameters));
return minimize(parameters);
}
MinimizerResult MinimizerAdapter::minimize(Parameters parameters)
{
setParameters(parameters);
propagateOptions();
m_status = rootMinimizer()->Minimize();
propagateResults(parameters);
MinimizerResult result;
result.setParameters(parameters);
result.setMinValue(minValue());
result.setReport(internal::reportToString(*this));
result.setNumberOfCalls(m_adapter->numberOfCalls());
result.setNumberOfGradientCalls(m_adapter->numberOfGradientCalls());
return result;
}
std::string MinimizerAdapter::minimizerName() const
{
return m_minimizer_info.name();
}
std::string MinimizerAdapter::algorithmName() const
{
return m_minimizer_info.algorithmName();
}
void MinimizerAdapter::setParameters(const mumufit::Parameters& parameters)
{
unsigned int index(0);
for (const auto& par : parameters)
setParameter(index++, par);
}
double MinimizerAdapter::minValue() const
{
return rootMinimizer()->MinValue();
}
std::string MinimizerAdapter::statusToString() const
{
return m_status ? "Minimum found" : "Error in solving";
}
bool MinimizerAdapter::providesError() const
{
return rootMinimizer()->ProvidesError();
}
std::map<std::string, std::string> MinimizerAdapter::statusMap() const
{
std::map<std::string, std::string> result;
result["Status"] = statusToString();
if (providesError())
result["ProvidesError"] = "Provides parameters error and error matrix";
else
result["ProvidesError"] = "Doesn't provide error calculation";
result["MinValue"] = mumufit::stringUtil::scientific(minValue());
return result;
}
void MinimizerAdapter::setOptions(const std::string& optionString)
{
options().setOptionString(optionString);
}
//! Propagates results of minimization to fit parameter set
void MinimizerAdapter::propagateResults(mumufit::Parameters& parameters)
{
parameters.setValues(parValuesAtMinimum());
parameters.setErrors(parErrorsAtMinimum());
// sets correlation matrix
if (providesError()) {
auto lambda = [&](size_t i, size_t j) -> double {
return rootMinimizer()->Correlation(static_cast<unsigned int>(i),
static_cast<unsigned int>(j));
};
double2d_t matrix = FieldUtil::make<double>(fitRank(), fitRank(), lambda);
parameters.setCorrelationMatrix(matrix);
}
}
void MinimizerAdapter::setParameter(unsigned int index, const mumufit::Parameter& par)
{
bool success;
if (par.limits().isFixed())
success = rootMinimizer()->SetFixedVariable(index, par.name().c_str(), par.value());
else if (par.limits().isLimited())
success =
rootMinimizer()->SetLimitedVariable(index, par.name().c_str(), par.value(), par.step(),
par.limits().min(), par.limits().max());
else if (par.limits().isLowerLimited())
success = rootMinimizer()->SetLowerLimitedVariable(index, par.name().c_str(), par.value(),
par.step(), par.limits().min());
else if (par.limits().isUpperLimited())
success = rootMinimizer()->SetUpperLimitedVariable(index, par.name().c_str(), par.value(),
par.step(), par.limits().max());
else if (par.limits().isLimitless())
success = rootMinimizer()->SetVariable(index, par.name().c_str(), par.value(), par.step());
else
throw std::runtime_error("BasicMinimizer::setParameter -> Error! Unexpected parameter.");
if (!success) {
std::ostringstream ostr;
ostr << "BasicMinimizer::setParameter -> Error! Cannot set minimizer's fit parameter";
ostr << "Index:" << index << " name '" << par.name() << "'";
throw std::runtime_error(ostr.str());
}
}
//! Returns number of fit parameters defined (i.e. dimension of the function to be minimized).
size_t MinimizerAdapter::fitRank() const
{
return rootMinimizer()->NDim();
}
//! Returns value of the variables at minimum.
std::vector<double> MinimizerAdapter::parValuesAtMinimum() const
{
std::vector<double> result;
result.resize(fitRank(), 0.0);
std::copy(rootMinimizer()->X(), rootMinimizer()->X() + fitRank(), result.begin());
return result;
}
//! Returns errors of the variables at minimum.
std::vector<double> MinimizerAdapter::parErrorsAtMinimum() const
{
std::vector<double> result;
result.resize(fitRank(), 0.0);
if (rootMinimizer()->Errors() != nullptr)
std::copy(rootMinimizer()->Errors(), rootMinimizer()->Errors() + fitRank(), result.begin());
return result;
}
MinimizerAdapter::root_minimizer_t* MinimizerAdapter::rootMinimizer()
{
return const_cast<root_minimizer_t*>(
static_cast<const MinimizerAdapter*>(this)->rootMinimizer());
}
|