1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Fit/Suite/GeneticMinimizer.cpp
//! @brief Implements class GeneticMinimizer.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Fit/Suite/GeneticMinimizer.h"
#include <Math/GeneticMinimizer.h>
namespace {
std::map<int, std::string> statusDescription()
{
std::map<int, std::string> result;
result[0] = "OK, minimum found";
result[1] = "Maximum number of iterations reached";
return result;
}
} // namespace
GeneticMinimizer::GeneticMinimizer()
: MinimizerAdapter(MinimizerInfo::buildGeneticInfo())
, m_genetic_minimizer(new ROOT::Math::GeneticMinimizer())
{
addOption("Tolerance", 0.01, "Tolerance on the function value at the minimum");
addOption("PrintLevel", 0, "Minimizer internal print level");
addOption("MaxIterations", 3, "Maximum number of iterations");
addOption("PopSize", 300, "Population size");
addOption("RandomSeed", 0, "Random seed");
}
GeneticMinimizer::~GeneticMinimizer() = default;
void GeneticMinimizer::setTolerance(double value)
{
setOptionValue("Tolerance", value);
}
double GeneticMinimizer::tolerance() const
{
return optionValue<double>("Tolerance");
}
void GeneticMinimizer::setPrintLevel(int value)
{
setOptionValue("PrintLevel", value);
}
int GeneticMinimizer::printLevel() const
{
return optionValue<int>("PrintLevel");
}
void GeneticMinimizer::setMaxIterations(int value)
{
setOptionValue("MaxIterations", value);
}
int GeneticMinimizer::maxIterations() const
{
return optionValue<int>("MaxIterations");
}
void GeneticMinimizer::setPopulationSize(int value)
{
setOptionValue("PopSize", value);
}
int GeneticMinimizer::populationSize() const
{
return optionValue<int>("PopSize");
}
void GeneticMinimizer::setRandomSeed(int value)
{
setOptionValue("RandomSeed", value);
}
int GeneticMinimizer::randomSeed() const
{
return optionValue<int>("RandomSeed");
}
void GeneticMinimizer::setParameter(unsigned int index, const mumufit::Parameter& par)
{
if (!par.limits().isFixed() && !par.limits().isLimited()) {
std::ostringstream ostr;
ostr << "GeneticMinimizer::setParameter -> Error! "
<< "Genetic minimizer requires either fixed or "
<< "limited AttLimits::limited(left,right) parameter. "
<< " Parameter name '" << par.name() << "', limits:" << par.limits().toString();
throw std::runtime_error(ostr.str());
}
MinimizerAdapter::setParameter(index, par);
}
std::string GeneticMinimizer::statusToString() const
{
return statusDescription()[rootMinimizer()->Status()];
}
std::map<std::string, std::string> GeneticMinimizer::statusMap() const
{
auto result = MinimizerAdapter::statusMap();
result["functionCalls"] = std::to_string(rootMinimizer()->NCalls());
return result;
}
void GeneticMinimizer::propagateOptions()
{
ROOT::Math::GeneticMinimizerParameters pars;
pars.fPopSize = populationSize();
pars.fNsteps = maxIterations();
const double scale_as_in_root = 10.0;
pars.fConvCrit = scale_as_in_root * tolerance();
pars.fSeed = randomSeed();
m_genetic_minimizer->SetParameters(pars);
}
const MinimizerAdapter::root_minimizer_t* GeneticMinimizer::rootMinimizer() const
{
return m_genetic_minimizer.get();
}
|