File: Minuit2Minimizer.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (157 lines) | stat: -rw-r--r-- 4,903 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Fit/Suite/Minuit2Minimizer.cpp
//! @brief     Declares class Minuit2Minimizer.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Fit/Suite/Minuit2Minimizer.h"
#include "Fit/Tool/StringUtil.h"
#include <Minuit2/Minuit2Minimizer.h>

namespace {

std::map<int, std::string> statusDescription()
{
    std::map<int, std::string> result;
    result[0] = "OK, valid minimum";
    result[1] = "Didn't converge, covariance was made pos defined";
    result[2] = "Didn't converge, Hessian is invalid";
    result[3] = "Didn't converge, Edm is above max";
    result[4] = "Didn't converge, reached call limit";
    result[5] = "Didn't converge, unknown failure";
    return result;
}

std::map<int, std::string> covmatrixStatusDescription()
{
    std::map<int, std::string> result;
    result[-1] = "Not available (inversion failed or Hessian failed)";
    result[0] = "Available but not positive defined";
    result[1] = "Covariance only approximate";
    result[2] = "Full matrix but forced pos def";
    result[3] = "Full accurate";
    return result;
}

} // namespace

Minuit2Minimizer::Minuit2Minimizer(const std::string& algorithmName)
    : MinimizerAdapter(MinimizerInfo::buildMinuit2Info(algorithmName))
    , m_minuit2_minimizer(new ROOT::Minuit2::Minuit2Minimizer(algorithmName.c_str()))
{
    addOption("Strategy", 1, "Minimization strategy (0-low, 1-medium, 2-high quality)");
    addOption("ErrorDef", 1.0, "Error definition factor for parameter error calculation");
    addOption("Tolerance", 0.01, "Tolerance on the function value at the minimum");
    addOption("Precision", -1.0, "Relative floating point arithmetic precision");
    addOption("PrintLevel", 0, "Minimizer internal print level");
    addOption("MaxFunctionCalls", 0, "Maximum number of function calls");
}

Minuit2Minimizer::~Minuit2Minimizer() = default;

void Minuit2Minimizer::setStrategy(int value)
{
    setOptionValue("Strategy", value);
}

int Minuit2Minimizer::strategy() const
{
    return optionValue<int>("Strategy");
}

void Minuit2Minimizer::setErrorDefinition(double value)
{
    setOptionValue("ErrorDef", value);
}

double Minuit2Minimizer::errorDefinition() const
{
    return optionValue<double>("ErrorDef");
}

void Minuit2Minimizer::setTolerance(double value)
{
    setOptionValue("Tolerance", value);
}

double Minuit2Minimizer::tolerance() const
{
    return optionValue<double>("Tolerance");
}

void Minuit2Minimizer::setPrecision(double value)
{
    setOptionValue("Precision", value);
}

double Minuit2Minimizer::precision() const
{
    return optionValue<double>("Precision");
}

void Minuit2Minimizer::setPrintLevel(int value)
{
    setOptionValue("PrintLevel", value);
}

int Minuit2Minimizer::printLevel() const
{
    return optionValue<int>("PrintLevel");
}

void Minuit2Minimizer::setMaxFunctionCalls(int value)
{
    setOptionValue("MaxFunctionCalls", value);
}

int Minuit2Minimizer::maxFunctionCalls() const
{
    return optionValue<int>("MaxFunctionCalls");
}

std::string Minuit2Minimizer::statusToString() const
{
    return statusDescription()[rootMinimizer()->Status()];
}

std::map<std::string, std::string> Minuit2Minimizer::statusMap() const
{
    auto result = MinimizerAdapter::statusMap();
    result["Edm"] = mumufit::stringUtil::scientific(rootMinimizer()->Edm());
    result["CovMatrixStatus"] = covmatrixStatusDescription()[rootMinimizer()->CovMatrixStatus()];
    result["functionCalls"] = std::to_string(rootMinimizer()->NCalls());
    return result;
}

// Fumili algorithm can work only with gradient based objective function, while others can
// work with both, gradient based and chi2 based functions. Historically however, we use
// simplified approach: if not Fumili, then chi2 only. Think of refactoring TODO.
bool Minuit2Minimizer::requiresResiduals()
{
    return algorithmName() == "Fumili";
}

//! Propagate options down to ROOT's Minuit2Minimizer.

void Minuit2Minimizer::propagateOptions()
{
    m_minuit2_minimizer->SetStrategy(strategy());
    m_minuit2_minimizer->SetErrorDef(errorDefinition());
    m_minuit2_minimizer->SetTolerance(tolerance());
    m_minuit2_minimizer->SetPrecision(precision());
    m_minuit2_minimizer->SetPrintLevel(printLevel());
    m_minuit2_minimizer->SetMaxFunctionCalls(static_cast<unsigned int>(maxFunctionCalls()));
}

const MinimizerAdapter::root_minimizer_t* Minuit2Minimizer::rootMinimizer() const
{
    return m_minuit2_minimizer.get();
}