1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file GUI/Model/Beam/SourceItems.cpp
//! @brief Implements BeamItem hierarchy.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "GUI/Model/Beam/SourceItems.h"
#include "Base/Axis/Frame.h"
#include "Base/Axis/Scale.h"
#include "Base/Const/Units.h"
#include "Base/Util/Assert.h"
#include "Device/Beam/Beam.h"
#include "Device/Beam/FootprintGauss.h"
#include "Device/Beam/FootprintSquare.h"
#include "GUI/Model/Axis/BasicAxisItem.h"
#include "GUI/Model/Axis/PointwiseAxisItem.h"
#include "GUI/Model/Beam/BeamDistributionItem.h"
#include "GUI/Model/Beam/DistributionItems.h"
#include "Param/Distrib/Distributions.h"
#include "Sim/Scan/AlphaScan.h"
#include "Sim/Scan/LambdaScan.h"
#include "Sim/Scan/QzScan.h"
#include <numbers>
using std::numbers::pi;
namespace {
namespace Tag {
const QString AzimuthalAngle("AzimuthalAngle");
const QString GrazingAngle("GrazingAngle");
const QString BaseData("BaseData");
const QString BeamDistribution("BeamDistribution");
const QString ScanDistribution("ScanDistribution");
const QString ExpandBeamParametersGroupbox("ExpandBeamParametersGroupbox");
const QString ExpandFootprintGroupbox("ExpandFootprintGroupbox");
const QString Footprint("Footprint");
const QString Intensity("Intensity");
const QString IsUniformAxis("IsUniformAxis");
const QString ScanType("ScanType");
const QString ListScan("ListScan");
const QString PointwiseAxis("PointwiseAxis"); // used in pre-21
const QString UniformAxis("UniformAxis");
const QString Wavelength("Wavelength");
} // namespace Tag
} // namespace
// ************************************************************************************************
// SourceItem
// ************************************************************************************************
SourceItem::SourceItem()
: m_wavelength_item(std::make_unique<BeamDistributionItem>(1.))
, m_grazing_angle_item(std::make_unique<BeamDistributionItem>(Units::deg))
, m_azimuthal_angle_item(std::make_unique<BeamDistributionItem>(Units::deg))
{
m_intensity.init("Intensity", "", "Beam intensity in neutrons/photons per sec.", 1e8, 3, false,
RealLimits::limited(0.0, 1e32), "intensity");
m_footprint.simpleInit(
"Footprint type",
"Model for surface area where scattering takes place (\"beam footprint\")",
FootprintCatalog::Type::Gaussian);
m_wavelength_item->resetToValue(0.1);
ASSERT(m_wavelength_item->distributionItem());
m_wavelength_item->distributionItem()->setUnits("nm");
m_wavelength_item->distributionItem()->center().setLimits(RealLimits::nonnegative());
m_grazing_angle_item->resetToValue(0.2);
ASSERT(m_grazing_angle_item->distributionItem());
m_grazing_angle_item->distributionItem()->center().setLimits(RealLimits::limited(0., 90.));
m_grazing_angle_item->distributionItem()->setUnits("deg");
ASSERT(m_azimuthal_angle_item->distributionItem());
m_azimuthal_angle_item->distributionItem()->center().setLimits(RealLimits::limited(-90., 90.));
m_azimuthal_angle_item->distributionItem()->setUnits("deg");
}
void SourceItem::writeTo(QXmlStreamWriter* w) const
{
m_intensity.writeTo2(w, Tag::Intensity);
XML::writeTaggedElement(w, Tag::Wavelength, *m_wavelength_item);
XML::writeTaggedElement(w, Tag::GrazingAngle, *m_grazing_angle_item);
XML::writeTaggedElement(w, Tag::AzimuthalAngle, *m_azimuthal_angle_item);
XML::writeTaggedValue(w, Tag::ExpandBeamParametersGroupbox, expandBeamParameters);
XML::writeTaggedElement(w, Tag::Footprint, m_footprint);
XML::writeTaggedValue(w, Tag::ExpandFootprintGroupbox, expandFootprint);
}
void SourceItem::readFrom(QXmlStreamReader* r)
{
while (r->readNextStartElement()) {
QString tag = r->name().toString();
if (tag == Tag::Intensity)
m_intensity.readFrom2(r, tag);
else if (tag == Tag::Wavelength)
XML::readTaggedElement(r, tag, *m_wavelength_item);
else if (tag == Tag::GrazingAngle)
XML::readTaggedElement(r, tag, *m_grazing_angle_item);
else if (tag == Tag::AzimuthalAngle)
XML::readTaggedElement(r, tag, *m_azimuthal_angle_item);
else if (tag == Tag::ExpandBeamParametersGroupbox)
expandBeamParameters = XML::readTaggedBool(r, tag);
else if (tag == Tag::Footprint)
XML::readTaggedElement(r, tag, m_footprint);
else if (tag == Tag::ExpandFootprintGroupbox)
expandFootprint = XML::readTaggedBool(r, tag);
else
r->skipCurrentElement();
}
}
void SourceItem::setWavelength(double value)
{
ASSERT(m_wavelength_item);
m_wavelength_item->resetToValue(value);
}
BeamDistributionItem* SourceItem::grazingAngleItem() const
{
ASSERT(m_grazing_angle_item);
return m_grazing_angle_item.get();
}
void SourceItem::setGrazingAngle(double value)
{
ASSERT(m_grazing_angle_item);
m_grazing_angle_item->resetToValue(value);
}
BeamDistributionItem* SourceItem::wavelengthItem() const
{
ASSERT(m_wavelength_item);
return m_wavelength_item.get();
}
void SourceItem::setAzimuthalAngle(double value)
{
ASSERT(m_azimuthal_angle_item);
m_azimuthal_angle_item->resetToValue(value);
}
BeamDistributionItem* SourceItem::azimuthalAngleItem() const
{
ASSERT(m_azimuthal_angle_item);
return m_azimuthal_angle_item.get();
}
void SourceItem::setGaussianFootprint(double value)
{
m_footprint.setCertainItem(new FootprintGaussianItem(value));
}
void SourceItem::setSquareFootprint(double value)
{
m_footprint.setCertainItem(new FootprintSquareItem(value));
}
void SourceItem::setFootprintItem(const IFootprint* footprint)
{
if (!footprint)
return;
if (const auto* const fp = dynamic_cast<const FootprintGauss*>(footprint))
setGaussianFootprint(fp->widthRatio());
else if (const auto* const fp = dynamic_cast<const FootprintSquare*>(footprint))
setSquareFootprint(fp->widthRatio());
}
// ************************************************************************************************
// BeamItem
// ************************************************************************************************
BeamItem::BeamItem() {}
std::unique_ptr<Beam> BeamItem::createBeam() const
{
double lambda = wavelengthItem()->centralValue();
double grazing_angle = Units::deg2rad(grazingAngleItem()->centralValue());
double azimuthal_angle = Units::deg2rad(azimuthalAngleItem()->centralValue());
auto result =
std::make_unique<Beam>(intensity().dVal(), lambda, grazing_angle, azimuthal_angle);
result->setFootprint(m_footprint.certainItem()->createFootprint().get());
return result;
}
// ************************************************************************************************
// ScanItem
// ************************************************************************************************
ScanItem::ScanItem()
: m_current_axis_is_uniform_axis(true)
, m_uniform_axis(std::make_unique<BasicAxisItem>())
, m_scan_distribution_item(std::make_unique<BeamDistributionItem>())
{
m_scan_type.simpleInit("Scan type", "", ScanTypeCatalog::Type::Alpha);
setAxisPresentationDefaults(m_uniform_axis.get());
}
void ScanItem::setScan(const BeamScan* scan)
{
setIntensity(scan->commonIntensity());
BasicAxisItem* axis_item = currentAxisItem();
const Scale* axis = scan->coordinateAxis();
ASSERT(axis);
ASSERT(axis->isEquiScan());
axis_item->resize(static_cast<int>(axis->size()));
if (const auto* s = dynamic_cast<const AlphaScan*>(scan)) {
setWavelength(s->commonWavelength());
setAzimuthalAngle(s->commonAzimuthalAngle());
setFootprintItem(s->commonFootprint());
axis_item->setMin(axis->min() / Units::deg);
axis_item->setMax(axis->max() / Units::deg);
} else if (const auto* s = dynamic_cast<const LambdaScan*>(scan)) {
setGrazingAngle(s->commonGrazingAngle());
setAzimuthalAngle(s->commonAzimuthalAngle());
setFootprintItem(s->commonFootprint());
axis_item->setMin(axis->min() / Units::nm);
axis_item->setMax(axis->max() / Units::nm);
} else if (dynamic_cast<const QzScan*>(scan)) {
axis_item->setMin(axis->min() * Units::nm);
axis_item->setMax(axis->max() * Units::nm);
} else
ASSERT_NEVER
}
void ScanItem::writeTo(QXmlStreamWriter* w) const
{
XML::writeBaseElement<SourceItem>(w, XML::Tag::BaseData, this);
XML::writeTaggedElement(w, Tag::ScanType, m_scan_type);
XML::writeTaggedElement(w, Tag::ScanDistribution, *m_scan_distribution_item);
XML::writeTaggedValue(w, Tag::IsUniformAxis, m_current_axis_is_uniform_axis);
XML::writeTaggedElement(w, Tag::UniformAxis, *m_uniform_axis);
if (m_pointwise_axis)
XML::writeTaggedElement(w, Tag::ListScan, *m_pointwise_axis);
}
void ScanItem::readFrom(QXmlStreamReader* r)
{
while (r->readNextStartElement()) {
QString tag = r->name().toString();
if (tag == Tag::BaseData)
XML::readBaseElement<SourceItem>(r, tag, this);
else if (tag == Tag::ScanDistribution)
XML::readTaggedElement(r, tag, *m_scan_distribution_item);
else if (tag == Tag::ScanType)
XML::readTaggedElement(r, tag, m_scan_type);
else if (tag == Tag::IsUniformAxis)
m_current_axis_is_uniform_axis = XML::readTaggedBool(r, tag);
else if (tag == Tag::UniformAxis) {
m_uniform_axis = std::make_unique<BasicAxisItem>();
setAxisPresentationDefaults(m_uniform_axis.get());
XML::readTaggedElement(r, tag, *m_uniform_axis);
} else if (tag == Tag::ListScan || tag == Tag::PointwiseAxis) { // compatibility with pre-21
m_pointwise_axis = std::make_unique<PointwiseAxisItem>();
XML::readTaggedElement(r, tag, *m_pointwise_axis);
} else
r->skipCurrentElement();
}
}
void ScanItem::updateToData(const Scale& axis)
{
if (axis.unit() == "bin") {
initUniformAxis(axis);
selectUniformAxis();
} else {
initListScan(axis);
selectListScan();
}
}
int ScanItem::nBins() const
{
return currentAxisItem()->size();
}
BasicAxisItem* ScanItem::currentAxisItem() const
{
return m_current_axis_is_uniform_axis ? m_uniform_axis.get() : m_pointwise_axis.get();
}
//! Returns cloned object
Scale* ScanItem::newUniformScale() const
{
ScanTypeItem* scan_type = scanTypeSelection().certainItem();
Scale* xAxis = nullptr;
if (dynamic_cast<const AlphaScanTypeItem*>(scan_type))
xAxis = m_uniform_axis->makeAlphaScale().clone();
else if (dynamic_cast<const LambdaScanTypeItem*>(scan_type))
xAxis = m_uniform_axis->makeLambdaScale().clone();
else if (dynamic_cast<const QzScanTypeItem*>(scan_type))
xAxis = m_uniform_axis->makeQzScale().clone();
else
ASSERT_NEVER;
ASSERT(xAxis);
return xAxis;
}
//! Returns cloned object
Scale* ScanItem::newPointwiseScale() const
{
ASSERT(m_pointwise_axis);
const Scale* pAxis = m_pointwise_axis->scale();
if (!pAxis) // workaround for loading project
return {};
ScanTypeItem* scan_type = scanTypeSelection().certainItem();
// transform q-coords to angular or spectral coords
if (pAxis->unit() == "1/nm") {
if (dynamic_cast<AlphaScanTypeItem*>(scan_type)) {
double lambda = wavelengthItem()->centralValue();
Scale ax =
pAxis->transformedScale(Coordinate("alpha_i", "rad").label(), [lambda](double qz) {
if (lambda <= 0)
throw std::runtime_error("Nonpositive wavelength");
double s = qz * lambda / 4 / pi;
if (s > 1)
throw std::runtime_error(
"Q_z or wavelength are too big: the grazing angle is more than 90 deg");
return std::asin(s);
});
return ax.clone();
} else if (dynamic_cast<LambdaScanTypeItem*>(scan_type)) {
double alpha = Units::deg2rad(grazingAngleItem()->centralValue());
// also reverse axis
Scale ax = pAxis->reversedScale().transformedScale(
Coordinate("lambda", "nm").label(), [alpha](double qz) {
if (alpha <= 0)
throw std::runtime_error("Nonpositive grazing angle");
if (qz <= 0)
throw std::runtime_error("Nonpositive q_z = " + std::to_string(qz));
return 4 * pi * std::sin(alpha) / qz;
});
return ax.clone();
} else if (dynamic_cast<const QzScanTypeItem*>(scan_type)) {
Scale ax("q_z (1/nm)", pAxis->bins());
return ax.clone();
} else
ASSERT_NEVER;
}
return pAxis->clone();
}
bool ScanItem::pointwiseAxisDefined() const
{
return (bool)m_pointwise_axis;
}
void ScanItem::selectUniformAxis()
{
m_current_axis_is_uniform_axis = true;
}
void ScanItem::selectListScan()
{
ASSERT(pointwiseAxisDefined());
m_current_axis_is_uniform_axis = false;
}
void ScanItem::initUniformAxis(const Scale& axis)
{
m_uniform_axis->resize(static_cast<int>(axis.size()));
}
void ScanItem::initListScan(const Scale& axis)
{
if (!m_pointwise_axis)
m_pointwise_axis = std::make_unique<PointwiseAxisItem>();
m_pointwise_axis->setScale(axis);
}
void ScanItem::updateAxIndicators(const Frame& frame)
{
if (!m_pointwise_axis)
return;
m_pointwise_axis->updateAxIndicators(frame);
}
void ScanItem::setAxisPresentationDefaults(BasicAxisItem* axisItem) const
{
ASSERT(axisItem);
if (dynamic_cast<PointwiseAxisItem*>(axisItem))
return;
// default for both alpha and lambda scans
axisItem->resize(500);
axisItem->setMin(0.01); // positive, because wavelength>0
axisItem->setMax(3.0);
}
|