1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file GUI/Model/FromCore/ItemizeSimulation.cpp
//! @brief Implements namespace GUI::FromCore.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "GUI/Model/FromCore/ItemizeSimulation.h"
#include "Base/Axis/Scale.h"
#include "Base/Const/Units.h"
#include "Device/Beam/Beam.h"
#include "Device/Detector/IDetector.h"
#include "Device/Detector/OffspecDetector.h"
#include "Device/Mask/Ellipse.h"
#include "Device/Mask/InfinitePlane.h"
#include "Device/Mask/Line.h"
#include "Device/Mask/MaskStack.h"
#include "Device/Mask/Polygon.h"
#include "Device/Mask/Rectangle.h"
#include "Device/Resolution/ConvolutionDetectorResolution.h"
#include "Device/Resolution/ResolutionFunction2DGaussian.h"
#include "GUI/Model/Beam/BeamDistributionItem.h"
#include "GUI/Model/Beam/DistributionItems.h"
#include "GUI/Model/Beam/FootprintItems.h"
#include "GUI/Model/Beam/SourceItems.h"
#include "GUI/Model/Detector/DetectorItem.h"
#include "GUI/Model/Detector/OffspecDetectorItem.h"
#include "GUI/Model/Detector/ResolutionFunctionItems.h"
#include "GUI/Model/Mask/MasksSet.h"
#include "GUI/Model/Sim/InstrumentsSet.h"
#include "GUI/Model/Sim/SimulationOptionsItem.h"
#include "Param/Distrib/Distributions.h"
#include "Resample/Option/SimulationOptions.h"
#include "Sim/Background/ConstantBackground.h"
#include "Sim/Background/PoissonBackground.h"
#include "Sim/Scan/AlphaScan.h"
#include "Sim/Scan/LambdaScan.h"
#include "Sim/Scan/QzScan.h"
#include "Sim/Simulation/includeSimulations.h"
namespace {
//! Sets masks in MasksSet according to given IDetector core object.
std::unique_ptr<MasksSet> getMasksSet(const IDetector& detector)
{
std::unique_ptr<MasksSet> result = std::make_unique<MasksSet>();
const MaskStack* maskStack = detector.detectorMask();
for (size_t i = 0; i < maskStack->numberOfMasks(); ++i) {
const auto [shape, mask_value] = maskStack->patternAt(i);
MaskItem* mask_item = nullptr;
if (const auto* ellipse = dynamic_cast<const Ellipse*>(shape)) {
auto* m = new EllipseItem;
m->setXCenter(ellipse->getCenterX());
m->setYCenter(ellipse->getCenterY());
m->setXRadius(ellipse->radiusX());
m->setYRadius(ellipse->radiusY());
m->setAngle(ellipse->getTheta());
mask_item = m;
}
else if (const auto* rectangle = dynamic_cast<const Rectangle*>(shape)) {
auto* m = new RectangleItem;
m->setXLow(rectangle->getXlow());
m->setYLow(rectangle->getYlow());
m->setXHig(rectangle->getXup());
m->setYHig(rectangle->getYup());
mask_item = m;
}
else if (const auto* polygon = dynamic_cast<const Polygon*>(shape)) {
auto* m = new PolygonItem;
std::vector<double> xpos, ypos;
polygon->getPoints(xpos, ypos);
for (size_t ii = 0; ii < xpos.size(); ++ii)
m->addPoint(xpos[ii], ypos[ii]);
m->setIsClosed(true);
mask_item = m;
}
else if (const auto* vline = dynamic_cast<const VerticalLine*>(shape))
mask_item = new VerticalLineItem(vline->getXpos());
else if (const auto* hline = dynamic_cast<const HorizontalLine*>(shape))
mask_item = new HorizontalLineItem(hline->getYpos());
else if (dynamic_cast<const InfinitePlane*>(shape))
mask_item = new FullframeItem;
else
ASSERT_NEVER;
ASSERT(mask_item);
mask_item->setMaskValue(mask_value);
result->add_item(mask_item);
}
if (detector.hasExplicitRegionOfInterest()) {
const auto xBounds = detector.regionOfInterestBounds(0);
const auto yBounds = detector.regionOfInterestBounds(1);
auto* roiItem = new RegionOfInterestItem;
roiItem->setXLow(xBounds.first);
roiItem->setYLow(yBounds.first);
roiItem->setXHig(xBounds.second);
roiItem->setYHig(yBounds.second);
result->add_item(roiItem);
}
return result;
}
//! Sets masks in DetectorItem according to given IDetector core object.
void setMaskStacks(DetectorItem* detector_item, const IDetector& detector)
{
if ((detector.detectorMask() && detector.detectorMask()->hasMasks())
|| detector.hasExplicitRegionOfInterest())
detector_item->setMasks(getMasksSet(detector).get());
}
//! Sets BeamDistributionItem according to given IDistribution1D core object.
void setDistributionTypeAndPars(BeamDistributionItem* pdi, const IDistribution1D* d)
{
const double factor = 1 / pdi->scaleFactor();
PolyPtr<DistributionItem, DistributionCatalog>& di = pdi->distributionSelection();
if (const auto* dd = dynamic_cast<const DistributionGate*>(d)) {
auto* item = new DistributionGateItem();
item->center().setDVal(factor * (dd->min() + dd->max()) / 2);
item->halfwidth().setDVal(factor * (dd->max() - dd->min()) / 2);
di.setCertainItem(item);
} else if (const auto* dd = dynamic_cast<const DistributionLorentz*>(d)) {
auto* item = new DistributionLorentzItem();
item->mean().setDVal(factor * dd->mean());
item->hwhm().setDVal(factor * dd->hwhm());
di.setCertainItem(item);
} else if (const auto* dd = dynamic_cast<const DistributionGaussian*>(d)) {
auto* item = new DistributionGaussianItem();
item->mean().setDVal(factor * dd->mean());
item->standardDeviation().setDVal(factor * dd->getStdDev());
di.setCertainItem(item);
} else if (const auto* dd = dynamic_cast<const DistributionLogNormal*>(d)) {
auto* item = new DistributionLogNormalItem();
item->median().setDVal(factor * dd->getMedian());
item->scaleParameter().setDVal(dd->getScalePar());
di.setCertainItem(item);
} else if (const auto* dd = dynamic_cast<const DistributionCosine*>(d)) {
auto* item = new DistributionCosineItem();
item->mean().setDVal(factor * dd->mean());
item->hwhm().setDVal(factor * dd->hwhm());
di.setCertainItem(item);
} else
ASSERT_NEVER;
}
void setDistribution(BeamDistributionItem* pdi, ParameterDistribution par_distr)
{
setDistributionTypeAndPars(pdi, par_distr.getDistribution());
DistributionItem* distItem = pdi->distributionItem();
distItem->setNumberOfSamples((int)par_distr.nDraws());
distItem->relSamplingWidth().setDVal(par_distr.relSamplingWidth());
}
void addDistributionToItem(BeamDistributionItem* pdi, const IDistribution1D* distribution)
{
if (!pdi)
return;
setDistributionTypeAndPars(pdi, distribution);
DistributionItem* distItem = pdi->distributionItem();
distItem->setNumberOfSamples((int)distribution->nSamples());
distItem->relSamplingWidth().setDVal(distribution->relSamplingWidth());
}
void setupScanItem(ScanItem* item, const BeamScan* scan)
{
item->setScan(scan);
if (const auto* s2 = dynamic_cast<const AlphaScan*>(scan)) {
item->scanTypeSelection().setCertainItem(new AlphaScanTypeItem);
if (const IDistribution1D* distribution = s2->wavelengthDistribution())
addDistributionToItem(item->wavelengthItem(), distribution);
if (const IDistribution1D* distribution = s2->azimuthalAngleDistribution())
addDistributionToItem(item->azimuthalAngleItem(), distribution);
// distribution of the scanned parameter
if (const IDistribution1D* distribution = s2->grazingAngleDistribution())
addDistributionToItem(item->scanDistributionItem(), distribution);
} else if (const auto* s2 = dynamic_cast<const LambdaScan*>(scan)) {
item->scanTypeSelection().setCertainItem(new LambdaScanTypeItem);
if (const IDistribution1D* distribution = s2->grazingAngleDistribution())
addDistributionToItem(item->grazingAngleItem(), distribution);
if (const IDistribution1D* distribution = s2->azimuthalAngleDistribution())
addDistributionToItem(item->azimuthalAngleItem(), distribution);
// distribution of the scanned parameter
if (const IDistribution1D* distribution = s2->wavelengthDistribution())
addDistributionToItem(item->scanDistributionItem(), distribution);
} else if (const auto* s2 = dynamic_cast<const QzScan*>(scan)) {
auto* typeItem = new QzScanTypeItem;
typeItem->setUseRelativeResolution(s2->resolution_is_relative());
item->scanTypeSelection().setCertainItem(new QzScanTypeItem);
// distribution of the scanned parameter
if (const IDistribution1D* distribution = s2->qzDistribution())
addDistributionToItem(item->scanDistributionItem(), distribution);
} else
ASSERT_NEVER
}
void setGISASBeamItem(BeamItem* beam_item, const ScatteringSimulation& simulation)
{
ASSERT(beam_item);
const Beam& beam = simulation.beam();
beam_item->setIntensity(beam.intensity());
beam_item->setWavelength(beam.wavelength());
beam_item->setGrazingAngle(Units::rad2deg(beam.alpha_i()));
beam_item->setAzimuthalAngle(Units::rad2deg(beam.phi_i()));
beam_item->setFootprintItem(beam.footprint());
for (const ParameterDistribution& pd : simulation.paramDistributions()) {
if (pd.whichParameter() == ParameterDistribution::BeamWavelength)
setDistribution(beam_item->wavelengthItem(), pd);
else if (pd.whichParameter() == ParameterDistribution::BeamGrazingAngle)
setDistribution(beam_item->grazingAngleItem(), pd);
else if (pd.whichParameter() == ParameterDistribution::BeamAzimuthalAngle)
setDistribution(beam_item->azimuthalAngleItem(), pd);
else
ASSERT_NEVER;
}
}
void setDetectorResolution(DetectorItem* detector_item, const IDetector& detector)
{
const IDetectorResolution* resfunc = detector.detectorResolution();
if (!resfunc)
return;
if (const auto* convfunc = dynamic_cast<const ConvolutionDetectorResolution*>(resfunc)) {
if (const auto* resfunc = dynamic_cast<const ResolutionFunction2DGaussian*>(
convfunc->getResolutionFunction2D())) {
auto* item = new ResolutionFunction2DGaussianItem();
item->setSigmaX(resfunc->sigmaX());
item->setSigmaY(resfunc->sigmaY());
detector_item->resolutionFunctionSelection().setCertainItem(item);
} else
ASSERT_NEVER;
} else
ASSERT_NEVER;
}
void setPolarizer2(InstrumentItem* instrument_item, const PolFilter& analyzer)
{
instrument_item->setAnalyzerBlochVector(analyzer.BlochVector());
}
void updateDetector(Scatter2DInstrumentItem* instrument_item, const IDetector& detector)
{
auto* detector_item = instrument_item->detectorItem();
detector_item->phiAxis().setNbins(detector.axis(0).size());
detector_item->phiAxis().min().setDVal(Units::rad2deg(detector.axis(0).min()));
detector_item->phiAxis().max().setDVal(Units::rad2deg(detector.axis(0).max()));
detector_item->alphaAxis().setNbins(detector.axis(1).size());
detector_item->alphaAxis().min().setDVal(Units::rad2deg(detector.axis(1).min()));
detector_item->alphaAxis().max().setDVal(Units::rad2deg(detector.axis(1).max()));
setDetectorResolution(detector_item, detector);
setMaskStacks(detector_item, detector);
setPolarizer2(instrument_item, detector.analyzer());
}
void setBackground(InstrumentItem* instrument_item, const ISimulation& simulation)
{
const auto* bg = simulation.background();
PolyPtr<BackgroundItem, BackgroundCatalog>& ib = instrument_item->backgroundSelection();
if (const auto* constant_bg = dynamic_cast<const ConstantBackground*>(bg)) {
auto* item = new ConstantBackgroundItem();
item->setBackgroundValue(constant_bg->backgroundValue());
ib.setCertainItem(item);
} else if (dynamic_cast<const PoissonBackground*>(bg)) {
auto item = new PoissonBackgroundItem();
ib.setCertainItem(item);
}
}
Scatter2DInstrumentItem* createScatter2DInstrumentItem(const ScatteringSimulation& simulation)
{
auto* result = new Scatter2DInstrumentItem;
setGISASBeamItem(result->beamItem(), simulation);
result->setPolarizerBlochVector(simulation.beam().polVector());
const auto* det = dynamic_cast<const IDetector*>(simulation.getDetector());
ASSERT(det);
updateDetector(result, *det);
result->setWithPolarizer(true);
result->setWithAnalyzer(true);
setBackground(result, simulation);
return result;
}
OffspecInstrumentItem* createOffspecInstrumentItem(const OffspecSimulation& simulation)
{
auto* result = new OffspecInstrumentItem;
setupScanItem(result->scanItem(), simulation.scan());
const OffspecDetector& detector = simulation.detector();
OffspecDetectorItem* detectorItem = result->detectorItem();
const Scale& phi_axis = detector.axis(0);
const Scale& alpha_axis = detector.axis(1);
auto& phiAxisProperty = detectorItem->phiAxis();
phiAxisProperty.setNbins(phi_axis.size());
phiAxisProperty.min().setDVal(Units::rad2deg(phi_axis.min()));
phiAxisProperty.max().setDVal(Units::rad2deg(phi_axis.max()));
auto& alphaAxisProperty = detectorItem->alphaAxis();
alphaAxisProperty.setNbins(alpha_axis.size());
alphaAxisProperty.min().setDVal(Units::rad2deg(alpha_axis.min()));
alphaAxisProperty.max().setDVal(Units::rad2deg(alpha_axis.max()));
setPolarizer2(result, detector.analyzer());
result->setWithPolarizer(true);
result->setWithAnalyzer(true);
setBackground(result, simulation);
return result;
}
SpecularInstrumentItem* createSpecularInstrumentItem(const SpecularSimulation& simulation)
{
auto* result = new SpecularInstrumentItem;
setupScanItem(result->scanItem(), simulation.scan());
// TODO set polarizer & analyzer&
setBackground(result, simulation);
return result;
}
DepthprobeInstrumentItem* createDepthprobeInstrumentItem(const DepthprobeSimulation& simulation)
{
auto* result = new DepthprobeInstrumentItem;
setupScanItem(result->scanItem(), simulation.scan());
const Scale& z_scale = simulation.z_axis();
result->zAxis().setNbins(z_scale.size());
result->zAxis().min().setDVal(z_scale.min());
result->zAxis().max().setDVal(z_scale.max());
return result;
}
} // namespace
InstrumentItem* GUI::FromCore::itemizeInstrument(const ISimulation& simulation)
{
InstrumentItem* result;
if (const auto* sim = dynamic_cast<const ScatteringSimulation*>(&simulation))
result = createScatter2DInstrumentItem(*sim);
else if (const auto* sim = dynamic_cast<const OffspecSimulation*>(&simulation))
result = createOffspecInstrumentItem(*sim);
else if (const auto* sim = dynamic_cast<const SpecularSimulation*>(&simulation))
result = createSpecularInstrumentItem(*sim);
else if (const auto* sim = dynamic_cast<const DepthprobeSimulation*>(&simulation))
result = createDepthprobeInstrumentItem(*sim);
else
ASSERT_NEVER;
return result;
}
SimulationOptionsItem* GUI::FromCore::itemizeOptions(const ISimulation& simulation)
{
auto* result = new SimulationOptionsItem;
if (simulation.options().isIntegrate())
result->setUseMonteCarloIntegration(
static_cast<unsigned>(simulation.options().getMcPoints()));
else
result->setUseAnalytical();
result->setUseAverageMaterials(simulation.options().useAvgMaterials());
result->setIncludeSpecularPeak(simulation.options().includeSpecular());
return result;
}
|