File: ItemizeSimulation.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (404 lines) | stat: -rw-r--r-- 16,087 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      GUI/Model/FromCore/ItemizeSimulation.cpp
//! @brief     Implements namespace GUI::FromCore.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "GUI/Model/FromCore/ItemizeSimulation.h"
#include "Base/Axis/Scale.h"
#include "Base/Const/Units.h"
#include "Device/Beam/Beam.h"
#include "Device/Detector/IDetector.h"
#include "Device/Detector/OffspecDetector.h"
#include "Device/Mask/Ellipse.h"
#include "Device/Mask/InfinitePlane.h"
#include "Device/Mask/Line.h"
#include "Device/Mask/MaskStack.h"
#include "Device/Mask/Polygon.h"
#include "Device/Mask/Rectangle.h"
#include "Device/Resolution/ConvolutionDetectorResolution.h"
#include "Device/Resolution/ResolutionFunction2DGaussian.h"
#include "GUI/Model/Beam/BeamDistributionItem.h"
#include "GUI/Model/Beam/DistributionItems.h"
#include "GUI/Model/Beam/FootprintItems.h"
#include "GUI/Model/Beam/SourceItems.h"
#include "GUI/Model/Detector/DetectorItem.h"
#include "GUI/Model/Detector/OffspecDetectorItem.h"
#include "GUI/Model/Detector/ResolutionFunctionItems.h"
#include "GUI/Model/Mask/MasksSet.h"
#include "GUI/Model/Sim/InstrumentsSet.h"
#include "GUI/Model/Sim/SimulationOptionsItem.h"
#include "Param/Distrib/Distributions.h"
#include "Resample/Option/SimulationOptions.h"
#include "Sim/Background/ConstantBackground.h"
#include "Sim/Background/PoissonBackground.h"
#include "Sim/Scan/AlphaScan.h"
#include "Sim/Scan/LambdaScan.h"
#include "Sim/Scan/QzScan.h"
#include "Sim/Simulation/includeSimulations.h"

namespace {

//! Sets masks in MasksSet according to given IDetector core object.
std::unique_ptr<MasksSet> getMasksSet(const IDetector& detector)
{
    std::unique_ptr<MasksSet> result = std::make_unique<MasksSet>();
    const MaskStack* maskStack = detector.detectorMask();
    for (size_t i = 0; i < maskStack->numberOfMasks(); ++i) {
        const auto [shape, mask_value] = maskStack->patternAt(i);

        MaskItem* mask_item = nullptr;
        if (const auto* ellipse = dynamic_cast<const Ellipse*>(shape)) {
            auto* m = new EllipseItem;
            m->setXCenter(ellipse->getCenterX());
            m->setYCenter(ellipse->getCenterY());
            m->setXRadius(ellipse->radiusX());
            m->setYRadius(ellipse->radiusY());
            m->setAngle(ellipse->getTheta());
            mask_item = m;
        }

        else if (const auto* rectangle = dynamic_cast<const Rectangle*>(shape)) {
            auto* m = new RectangleItem;
            m->setXLow(rectangle->getXlow());
            m->setYLow(rectangle->getYlow());
            m->setXHig(rectangle->getXup());
            m->setYHig(rectangle->getYup());
            mask_item = m;
        }

        else if (const auto* polygon = dynamic_cast<const Polygon*>(shape)) {
            auto* m = new PolygonItem;
            std::vector<double> xpos, ypos;
            polygon->getPoints(xpos, ypos);
            for (size_t ii = 0; ii < xpos.size(); ++ii)
                m->addPoint(xpos[ii], ypos[ii]);
            m->setIsClosed(true);
            mask_item = m;
        }

        else if (const auto* vline = dynamic_cast<const VerticalLine*>(shape))
            mask_item = new VerticalLineItem(vline->getXpos());

        else if (const auto* hline = dynamic_cast<const HorizontalLine*>(shape))
            mask_item = new HorizontalLineItem(hline->getYpos());

        else if (dynamic_cast<const InfinitePlane*>(shape))
            mask_item = new FullframeItem;
        else
            ASSERT_NEVER;

        ASSERT(mask_item);
        mask_item->setMaskValue(mask_value);
        result->add_item(mask_item);
    }

    if (detector.hasExplicitRegionOfInterest()) {
        const auto xBounds = detector.regionOfInterestBounds(0);
        const auto yBounds = detector.regionOfInterestBounds(1);

        auto* roiItem = new RegionOfInterestItem;
        roiItem->setXLow(xBounds.first);
        roiItem->setYLow(yBounds.first);
        roiItem->setXHig(xBounds.second);
        roiItem->setYHig(yBounds.second);
        result->add_item(roiItem);
    }

    return result;
}

//! Sets masks in DetectorItem according to given IDetector core object.
void setMaskStacks(DetectorItem* detector_item, const IDetector& detector)
{
    if ((detector.detectorMask() && detector.detectorMask()->hasMasks())
        || detector.hasExplicitRegionOfInterest())
        detector_item->setMasks(getMasksSet(detector).get());
}

//! Sets BeamDistributionItem according to given IDistribution1D core object.
void setDistributionTypeAndPars(BeamDistributionItem* pdi, const IDistribution1D* d)
{
    const double factor = 1 / pdi->scaleFactor();
    PolyPtr<DistributionItem, DistributionCatalog>& di = pdi->distributionSelection();

    if (const auto* dd = dynamic_cast<const DistributionGate*>(d)) {
        auto* item = new DistributionGateItem();
        item->center().setDVal(factor * (dd->min() + dd->max()) / 2);
        item->halfwidth().setDVal(factor * (dd->max() - dd->min()) / 2);
        di.setCertainItem(item);
    } else if (const auto* dd = dynamic_cast<const DistributionLorentz*>(d)) {
        auto* item = new DistributionLorentzItem();
        item->mean().setDVal(factor * dd->mean());
        item->hwhm().setDVal(factor * dd->hwhm());
        di.setCertainItem(item);
    } else if (const auto* dd = dynamic_cast<const DistributionGaussian*>(d)) {
        auto* item = new DistributionGaussianItem();
        item->mean().setDVal(factor * dd->mean());
        item->standardDeviation().setDVal(factor * dd->getStdDev());
        di.setCertainItem(item);
    } else if (const auto* dd = dynamic_cast<const DistributionLogNormal*>(d)) {
        auto* item = new DistributionLogNormalItem();
        item->median().setDVal(factor * dd->getMedian());
        item->scaleParameter().setDVal(dd->getScalePar());
        di.setCertainItem(item);
    } else if (const auto* dd = dynamic_cast<const DistributionCosine*>(d)) {
        auto* item = new DistributionCosineItem();
        item->mean().setDVal(factor * dd->mean());
        item->hwhm().setDVal(factor * dd->hwhm());
        di.setCertainItem(item);
    } else
        ASSERT_NEVER;
}

void setDistribution(BeamDistributionItem* pdi, ParameterDistribution par_distr)
{
    setDistributionTypeAndPars(pdi, par_distr.getDistribution());

    DistributionItem* distItem = pdi->distributionItem();

    distItem->setNumberOfSamples((int)par_distr.nDraws());
    distItem->relSamplingWidth().setDVal(par_distr.relSamplingWidth());
}

void addDistributionToItem(BeamDistributionItem* pdi, const IDistribution1D* distribution)
{
    if (!pdi)
        return;
    setDistributionTypeAndPars(pdi, distribution);

    DistributionItem* distItem = pdi->distributionItem();

    distItem->setNumberOfSamples((int)distribution->nSamples());
    distItem->relSamplingWidth().setDVal(distribution->relSamplingWidth());
}

void setupScanItem(ScanItem* item, const BeamScan* scan)
{
    item->setScan(scan);

    if (const auto* s2 = dynamic_cast<const AlphaScan*>(scan)) {
        item->scanTypeSelection().setCertainItem(new AlphaScanTypeItem);

        if (const IDistribution1D* distribution = s2->wavelengthDistribution())
            addDistributionToItem(item->wavelengthItem(), distribution);
        if (const IDistribution1D* distribution = s2->azimuthalAngleDistribution())
            addDistributionToItem(item->azimuthalAngleItem(), distribution);

        // distribution of the scanned parameter
        if (const IDistribution1D* distribution = s2->grazingAngleDistribution())
            addDistributionToItem(item->scanDistributionItem(), distribution);

    } else if (const auto* s2 = dynamic_cast<const LambdaScan*>(scan)) {
        item->scanTypeSelection().setCertainItem(new LambdaScanTypeItem);

        if (const IDistribution1D* distribution = s2->grazingAngleDistribution())
            addDistributionToItem(item->grazingAngleItem(), distribution);
        if (const IDistribution1D* distribution = s2->azimuthalAngleDistribution())
            addDistributionToItem(item->azimuthalAngleItem(), distribution);

        // distribution of the scanned parameter
        if (const IDistribution1D* distribution = s2->wavelengthDistribution())
            addDistributionToItem(item->scanDistributionItem(), distribution);

    } else if (const auto* s2 = dynamic_cast<const QzScan*>(scan)) {
        auto* typeItem = new QzScanTypeItem;
        typeItem->setUseRelativeResolution(s2->resolution_is_relative());
        item->scanTypeSelection().setCertainItem(new QzScanTypeItem);

        // distribution of the scanned parameter
        if (const IDistribution1D* distribution = s2->qzDistribution())
            addDistributionToItem(item->scanDistributionItem(), distribution);

    } else
        ASSERT_NEVER
}

void setGISASBeamItem(BeamItem* beam_item, const ScatteringSimulation& simulation)
{
    ASSERT(beam_item);
    const Beam& beam = simulation.beam();

    beam_item->setIntensity(beam.intensity());
    beam_item->setWavelength(beam.wavelength());
    beam_item->setGrazingAngle(Units::rad2deg(beam.alpha_i()));
    beam_item->setAzimuthalAngle(Units::rad2deg(beam.phi_i()));
    beam_item->setFootprintItem(beam.footprint());

    for (const ParameterDistribution& pd : simulation.paramDistributions()) {
        if (pd.whichParameter() == ParameterDistribution::BeamWavelength)
            setDistribution(beam_item->wavelengthItem(), pd);
        else if (pd.whichParameter() == ParameterDistribution::BeamGrazingAngle)
            setDistribution(beam_item->grazingAngleItem(), pd);
        else if (pd.whichParameter() == ParameterDistribution::BeamAzimuthalAngle)
            setDistribution(beam_item->azimuthalAngleItem(), pd);
        else
            ASSERT_NEVER;
    }
}

void setDetectorResolution(DetectorItem* detector_item, const IDetector& detector)
{
    const IDetectorResolution* resfunc = detector.detectorResolution();

    if (!resfunc)
        return;

    if (const auto* convfunc = dynamic_cast<const ConvolutionDetectorResolution*>(resfunc)) {
        if (const auto* resfunc = dynamic_cast<const ResolutionFunction2DGaussian*>(
                convfunc->getResolutionFunction2D())) {
            auto* item = new ResolutionFunction2DGaussianItem();
            item->setSigmaX(resfunc->sigmaX());
            item->setSigmaY(resfunc->sigmaY());
            detector_item->resolutionFunctionSelection().setCertainItem(item);
        } else
            ASSERT_NEVER;
    } else
        ASSERT_NEVER;
}

void setPolarizer2(InstrumentItem* instrument_item, const PolFilter& analyzer)
{
    instrument_item->setAnalyzerBlochVector(analyzer.BlochVector());
}

void updateDetector(Scatter2DInstrumentItem* instrument_item, const IDetector& detector)
{
    auto* detector_item = instrument_item->detectorItem();

    detector_item->phiAxis().setNbins(detector.axis(0).size());
    detector_item->phiAxis().min().setDVal(Units::rad2deg(detector.axis(0).min()));
    detector_item->phiAxis().max().setDVal(Units::rad2deg(detector.axis(0).max()));
    detector_item->alphaAxis().setNbins(detector.axis(1).size());
    detector_item->alphaAxis().min().setDVal(Units::rad2deg(detector.axis(1).min()));
    detector_item->alphaAxis().max().setDVal(Units::rad2deg(detector.axis(1).max()));

    setDetectorResolution(detector_item, detector);
    setMaskStacks(detector_item, detector);
    setPolarizer2(instrument_item, detector.analyzer());
}

void setBackground(InstrumentItem* instrument_item, const ISimulation& simulation)
{
    const auto* bg = simulation.background();
    PolyPtr<BackgroundItem, BackgroundCatalog>& ib = instrument_item->backgroundSelection();
    if (const auto* constant_bg = dynamic_cast<const ConstantBackground*>(bg)) {
        auto* item = new ConstantBackgroundItem();
        item->setBackgroundValue(constant_bg->backgroundValue());
        ib.setCertainItem(item);
    } else if (dynamic_cast<const PoissonBackground*>(bg)) {
        auto item = new PoissonBackgroundItem();
        ib.setCertainItem(item);
    }
}

Scatter2DInstrumentItem* createScatter2DInstrumentItem(const ScatteringSimulation& simulation)
{
    auto* result = new Scatter2DInstrumentItem;
    setGISASBeamItem(result->beamItem(), simulation);
    result->setPolarizerBlochVector(simulation.beam().polVector());
    const auto* det = dynamic_cast<const IDetector*>(simulation.getDetector());
    ASSERT(det);
    updateDetector(result, *det);
    result->setWithPolarizer(true);
    result->setWithAnalyzer(true);
    setBackground(result, simulation);
    return result;
}

OffspecInstrumentItem* createOffspecInstrumentItem(const OffspecSimulation& simulation)
{
    auto* result = new OffspecInstrumentItem;
    setupScanItem(result->scanItem(), simulation.scan());

    const OffspecDetector& detector = simulation.detector();
    OffspecDetectorItem* detectorItem = result->detectorItem();

    const Scale& phi_axis = detector.axis(0);
    const Scale& alpha_axis = detector.axis(1);

    auto& phiAxisProperty = detectorItem->phiAxis();
    phiAxisProperty.setNbins(phi_axis.size());
    phiAxisProperty.min().setDVal(Units::rad2deg(phi_axis.min()));
    phiAxisProperty.max().setDVal(Units::rad2deg(phi_axis.max()));

    auto& alphaAxisProperty = detectorItem->alphaAxis();
    alphaAxisProperty.setNbins(alpha_axis.size());
    alphaAxisProperty.min().setDVal(Units::rad2deg(alpha_axis.min()));
    alphaAxisProperty.max().setDVal(Units::rad2deg(alpha_axis.max()));

    setPolarizer2(result, detector.analyzer());
    result->setWithPolarizer(true);
    result->setWithAnalyzer(true);
    setBackground(result, simulation);
    return result;
}

SpecularInstrumentItem* createSpecularInstrumentItem(const SpecularSimulation& simulation)
{
    auto* result = new SpecularInstrumentItem;
    setupScanItem(result->scanItem(), simulation.scan());

    // TODO set polarizer & analyzer&

    setBackground(result, simulation);
    return result;
}

DepthprobeInstrumentItem* createDepthprobeInstrumentItem(const DepthprobeSimulation& simulation)
{
    auto* result = new DepthprobeInstrumentItem;
    setupScanItem(result->scanItem(), simulation.scan());

    const Scale& z_scale = simulation.z_axis();
    result->zAxis().setNbins(z_scale.size());
    result->zAxis().min().setDVal(z_scale.min());
    result->zAxis().max().setDVal(z_scale.max());

    return result;
}

} // namespace


InstrumentItem* GUI::FromCore::itemizeInstrument(const ISimulation& simulation)
{
    InstrumentItem* result;

    if (const auto* sim = dynamic_cast<const ScatteringSimulation*>(&simulation))
        result = createScatter2DInstrumentItem(*sim);
    else if (const auto* sim = dynamic_cast<const OffspecSimulation*>(&simulation))
        result = createOffspecInstrumentItem(*sim);
    else if (const auto* sim = dynamic_cast<const SpecularSimulation*>(&simulation))
        result = createSpecularInstrumentItem(*sim);
    else if (const auto* sim = dynamic_cast<const DepthprobeSimulation*>(&simulation))
        result = createDepthprobeInstrumentItem(*sim);
    else
        ASSERT_NEVER;

    return result;
}

SimulationOptionsItem* GUI::FromCore::itemizeOptions(const ISimulation& simulation)
{
    auto* result = new SimulationOptionsItem;

    if (simulation.options().isIntegrate())
        result->setUseMonteCarloIntegration(
            static_cast<unsigned>(simulation.options().getMcPoints()));
    else
        result->setUseAnalytical();

    result->setUseAverageMaterials(simulation.options().useAvgMaterials());
    result->setIncludeSpecularPeak(simulation.options().includeSpecular());

    return result;
}