1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file GUI/Model/Sample/RoughnessItems.cpp
//! @brief Implements classes RoughnessItems.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "GUI/Model/Sample/RoughnessItems.h"
#include "GUI/Model/Util/UtilXML.h"
#include "Sample/Interface/AutocorrelationModels.h"
namespace {
namespace Tag {
const QString BaseData("BaseData");
const QString HeightDistributionModel("HeightDistributionModel");
const QString CrosscorrelationModel("CrosscorrelationModel");
const QString MaxSpatialFrequency("MaxSpatialFrequency");
const QString Sigma("Sigma");
const QString Hurst("Hurst");
const QString LateralCorrelationLength("LateralCorrelationLength");
const QString ParticleVolume("ParticleVolume");
const QString DampingExp1("DampingExp1");
const QString DampingExp2("DampingExp2");
const QString DampingExp3("DampingExp3");
const QString DampingExp4("DampingExp4");
} // namespace Tag
} // namespace
void RoughnessItem::writeTo(QXmlStreamWriter* w) const
{
XML::writeTaggedElement(w, Tag::HeightDistributionModel, m_transient);
XML::writeTaggedElement(w, Tag::CrosscorrelationModel, m_crosscorrelation);
m_max_spatial_frequency.writeTo2(w, Tag::MaxSpatialFrequency);
}
void RoughnessItem::readFrom(QXmlStreamReader* r)
{
while (r->readNextStartElement()) {
QString tag = r->name().toString();
if (tag == Tag::HeightDistributionModel)
XML::readTaggedElement(r, tag, m_transient);
else if (tag == Tag::CrosscorrelationModel)
XML::readTaggedElement(r, tag, m_crosscorrelation);
else if (tag == Tag::MaxSpatialFrequency)
m_max_spatial_frequency.readFrom2(r, tag);
else
r->skipCurrentElement();
}
}
RoughnessItem::RoughnessItem(double max_spat_frequency)
{
m_transient.simpleInit("Interlayer transient",
"Laterally averaged profile of the transient transition (or "
"roughness height distribution)",
TransientCatalog::Type::Tanh);
m_crosscorrelation.simpleInit("Crosscorrelation",
"Model of roughness crosscorrelation between interfaces",
CrosscorrelationCatalog::Type::None);
m_max_spatial_frequency.init("Max spatial frequency", "1/nm",
"The upper limit of the roughness spatial frequency.\n "
"Minimum spatial scale of relief (in nm) is 1/max_frequency.",
max_spat_frequency, 3, RealLimits::positive(),
"maxSpatialFrequency");
}
//------------------------------------------------------------------------------------------------
SelfAffineFractalRoughnessItem::SelfAffineFractalRoughnessItem(double sigma, double hurst,
double corr_length,
double max_spat_frequency)
: RoughnessItem(max_spat_frequency)
{
m_sigma.init("Sigma", "nm", "height scale of the roughness", sigma, "sigma");
m_hurst.init("Hurst", "",
"Hurst parameter which describes how jagged the interface,\n "
"dimensionless (0.0, 1.0], where 0.0 gives more spikes, \n1.0 more smoothness.",
hurst, 3, RealLimits::limited(0.0, 1.0), "hurst");
m_lateral_correlation_length.init("Correlation length", "nm",
"Lateral correlation length of the roughness", corr_length,
"corrLen");
}
void SelfAffineFractalRoughnessItem::writeTo(QXmlStreamWriter* w) const
{
XML::writeBaseElement<RoughnessItem>(w, Tag::BaseData, this);
m_sigma.writeTo2(w, Tag::Sigma);
m_hurst.writeTo2(w, Tag::Hurst);
m_lateral_correlation_length.writeTo2(w, Tag::LateralCorrelationLength);
}
void SelfAffineFractalRoughnessItem::readFrom(QXmlStreamReader* r)
{
while (r->readNextStartElement()) {
QString tag = r->name().toString();
if (tag == Tag::BaseData)
XML::readBaseElement<RoughnessItem>(r, tag, this);
else if (tag == Tag::Sigma)
m_sigma.readFrom2(r, tag);
else if (tag == Tag::Hurst)
m_hurst.readFrom2(r, tag);
else if (tag == Tag::LateralCorrelationLength)
m_lateral_correlation_length.readFrom2(r, tag);
else
r->skipCurrentElement();
}
}
std::unique_ptr<AutocorrelationModel> SelfAffineFractalRoughnessItem::createModel() const
{
return std::make_unique<SelfAffineFractalModel>(m_sigma.dVal(), m_hurst.dVal(),
m_lateral_correlation_length.dVal(),
m_max_spatial_frequency.dVal());
}
DoubleProperties SelfAffineFractalRoughnessItem::roughnessProperties()
{
DoubleProperties result = {&m_sigma, &m_hurst, &m_lateral_correlation_length};
const auto base_pars = RoughnessItem::roughnessProperties();
for (const auto base_par : base_pars)
result.push_back(base_par);
return result;
}
//------------------------------------------------------------------------------------------------
LinearGrowthRoughnessItem::LinearGrowthRoughnessItem(double cluster_volume, double damp1,
double damp2, double damp3, double damp4,
double max_spat_frequency)
: RoughnessItem(max_spat_frequency)
{
m_cluster_volume.init("Cluster volume", "nm^3",
"Volume of cluster or particle arriving at a surface during deposition",
cluster_volume, "clusterVolume");
m_damp1.init("Damping exp 1", "",
"Exponent damping factor for spatial frequency raised to the power of 1", damp1,
"damping1");
m_damp2.init("Damping exp 2", "nm",
"Exponent damping factor for spatial frequency raised to the power of 2", damp2,
"damping2");
m_damp3.init("Damping exp 3", "nm^2",
"Exponent damping factor for spatial frequency raised to the power of 3", damp3,
"damping3");
m_damp4.init("Damping exp 4", "nm^3",
"Exponent damping factor for spatial frequency raised to the power of 4", damp4,
"damping4");
}
void LinearGrowthRoughnessItem::writeTo(QXmlStreamWriter* w) const
{
XML::writeBaseElement<RoughnessItem>(w, Tag::BaseData, this);
m_cluster_volume.writeTo2(w, Tag::ParticleVolume);
m_damp1.writeTo2(w, Tag::DampingExp1);
m_damp2.writeTo2(w, Tag::DampingExp2);
m_damp3.writeTo2(w, Tag::DampingExp3);
m_damp4.writeTo2(w, Tag::DampingExp4);
}
void LinearGrowthRoughnessItem::readFrom(QXmlStreamReader* r)
{
while (r->readNextStartElement()) {
QString tag = r->name().toString();
if (tag == Tag::BaseData)
XML::readBaseElement<RoughnessItem>(r, tag, this);
else if (tag == Tag::ParticleVolume)
m_cluster_volume.readFrom2(r, tag);
else if (tag == Tag::DampingExp1)
m_damp1.readFrom2(r, tag);
else if (tag == Tag::DampingExp2)
m_damp2.readFrom2(r, tag);
else if (tag == Tag::DampingExp3)
m_damp3.readFrom2(r, tag);
else if (tag == Tag::DampingExp4)
m_damp4.readFrom2(r, tag);
else
r->skipCurrentElement();
}
}
std::unique_ptr<AutocorrelationModel> LinearGrowthRoughnessItem::createModel() const
{
return std::make_unique<LinearGrowthModel>(m_cluster_volume.dVal(), m_damp1.dVal(),
m_damp2.dVal(), m_damp3.dVal(), m_damp4.dVal(),
m_max_spatial_frequency.dVal());
}
DoubleProperties LinearGrowthRoughnessItem::roughnessProperties()
{
DoubleProperties result = {&m_cluster_volume, &m_damp1, &m_damp2, &m_damp3, &m_damp4};
const auto base_pars = RoughnessItem::roughnessProperties();
for (const auto base_par : base_pars)
result.push_back(base_par);
return result;
}
|