File: RealspaceBuilder.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (385 lines) | stat: -rw-r--r-- 16,835 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      GUI/View/Realspace/RealspaceBuilder.cpp
//! @brief     Implements class RealspaceBuilder.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "GUI/View/Realspace/RealspaceBuilder.h"
#include "Base/Util/Assert.h"
#include "Base/Util/Vec.h"
#include "GUI/Model/Sample/CompoundItem.h"
#include "GUI/Model/Sample/CoreAndShellItem.h"
#include "GUI/Model/Sample/InterferenceItems.h"
#include "GUI/Model/Sample/LayerItem.h"
#include "GUI/Model/Sample/LayerStackItem.h"
#include "GUI/Model/Sample/MesocrystalItem.h"
#include "GUI/Model/Sample/ParticleItem.h"
#include "GUI/Model/Sample/ParticleLayoutItem.h"
#include "GUI/Model/Sample/RoughnessItems.h"
#include "GUI/Model/Sample/SampleItem.h"
#include "GUI/Model/ToCore/SampleToCore.h"
#include "Img3D/Build/BuilderUtil.h"
#include "Img3D/Build/Particle3DContainer.h"
#include "Img3D/Build/PositionBuilders.h"
#include "Img3D/Model/Layer.h"
#include "Img3D/Model/Model.h"
#include "Img3D/Model/ParticleFromFF.h"
#include "Img3D/Type/SceneGeometry.h"
#include "Sample/Aggregate/Interferences.h"
#include "Sample/Interface/Roughness.h"
#include "Sample/Interface/RoughnessMap.h"
#include "Sample/Multilayer/LayerStack.h"
#include "Sample/Multilayer/Sample.h"
#include "Sample/Particle/Compound.h"
#include "Sample/Particle/CoreAndShell.h"
#include "Sample/Particle/Mesocrystal.h"
#include "Sample/Particle/Particle.h"

using Img3D::F3;
using Img3D::Model;
using Img3D::Particle3DContainer;

namespace {

double2d_t generatePositions(IInterference* const iff, double layerSize, double density, int seed)
{
    if (!iff)
        return RandomPositionBuilder().generatePositions(layerSize, density, seed);

    if (auto* p = dynamic_cast<Interference1DLattice*>(iff))
        return Lattice1DPositionBuilder(p).generatePositions(layerSize, density, seed);

    if (auto* p = dynamic_cast<Interference2DLattice*>(iff))
        return Lattice2DPositionBuilder(p).generatePositions(layerSize, density, seed);

    if (auto* p = dynamic_cast<Interference2DParacrystal*>(iff))
        return Paracrystal2DPositionBuilder(p).generatePositions(layerSize, density, seed);

    if (auto* p = dynamic_cast<InterferenceFinite2DLattice*>(iff))
        return Finite2DLatticePositionBuilder(p).generatePositions(layerSize, density, seed);

    if (auto* p = dynamic_cast<InterferenceRadialParacrystal*>(iff))
        return RadialParacrystalPositionBuilder(p).generatePositions(layerSize, density, seed);

    // TODO https://jugit.fz-juelich.de/mlz/bornagain/-/issues/538
    if (dynamic_cast<InterferenceHardDisk*>(iff))
        throw std::runtime_error("Percus-Yevick model 3D vizualization is not implemented yet");

    ASSERT_NEVER;
}

double visualLayerThickness(const LayerItem& layerItem, const SceneGeometry& sceneGeometry)
{
    double thickness(0.0);
    if (layerItem.isAmbient() || layerItem.isSubstrate())
        thickness = sceneGeometry.topOrBottomLayerThickness;
    else
        thickness = layerItem.thickness().dVal();

    return thickness == 0.0 ? sceneGeometry.layerMinimumThickness : thickness;
}

std::unique_ptr<double2d_t> scaledArray(const double2d_t& src, double factor)
{
    ASSERT(src.size());
    return std::make_unique<double2d_t>(
        FieldUtil::make<double>(src.size(), src[0].size(),
                                [&src, factor](size_t i, size_t j) { return src[i][j] * factor; }));
}

std::unique_ptr<const double2d_t> roughnessMap(const Sample& sample, size_t i_layer,
                                               const SceneGeometry& sceneGeometry, int seed)
{
    if (i_layer >= sample.numberOfLayers() || sample.roughnessRMS(i_layer) == 0)
        return nullptr;

    int n = sceneGeometry.numRoughnessPointsAlongAxis;
    double L = 2 * sceneGeometry.layerSize;
    auto rmap = RoughnessMap(n, n, L, L, sample, i_layer, seed); // seed < 0 ==> random every time
    return std::make_unique<const double2d_t>(rmap.generateMap());
}

std::unique_ptr<Img3D::Layer> createLayer(const LayerItem& layerItem,
                                          const SceneGeometry& sceneGeometry, const F3& origin,
                                          const double2d_t* topRoughMap,
                                          const double2d_t* bottomRoughMap, bool drawBottom)
{
    double s2 = sceneGeometry.layerSize;
    double thickness = ::visualLayerThickness(layerItem, sceneGeometry);
    ASSERT(thickness > 0);
    auto ztop = static_cast<double>(origin.z());
    double zbottom = static_cast<double>(origin.z()) - thickness;

    // visual mesh will later be scaled, so we divide roughness by thickness factor in advance
    auto top = topRoughMap ? ::scaledArray(*topRoughMap, 1. / thickness) : nullptr;
    auto bottom = bottomRoughMap ? ::scaledArray(*bottomRoughMap, 1. / thickness) : nullptr;

    std::unique_ptr<Img3D::Layer> result = std::make_unique<Img3D::Layer>(
        Img3D::F3Range(Img3D::F3fromR3({-s2, -s2, ztop}), Img3D::F3fromR3({s2, s2, zbottom})),
        top.get(), bottom.get(), drawBottom);

    QColor color = layerItem.materialColor();
    color.setAlphaF(.3);
    result->setColor(color);
    return result;
}

} // namespace


RealspaceBuilder::RealspaceBuilder(std::function<QColor(const QString&)> fnColorFromMaterialName)
{
    m_builder_utils = std::make_unique<Img3D::BuilderUtils>(fnColorFromMaterialName);
}

RealspaceBuilder::~RealspaceBuilder() = default;

void RealspaceBuilder::populate(Model* model, const Item3D* item, const SampleItem* sampleItem,
                                const SceneGeometry& sceneGeometry, unsigned& numParticles) const
{
    ASSERT(item);

    // depending on item type, visualize the full sample model, or only parts of it
    if (const auto* p = dynamic_cast<const SampleItem*>(item))
        populateSample(model, *p, sceneGeometry, numParticles);

    else if (const auto* p = dynamic_cast<const LayerStackItem*>(item))
        populateStack(model, *p, *sampleItem, sceneGeometry, numParticles);

    else if (const auto* p = dynamic_cast<const LayerItem*>(item))
        populateLayer(model, *p, *sampleItem, sceneGeometry, numParticles);

    else if (const auto* p = dynamic_cast<const ParticleLayoutItem*>(item))
        populateLayout(model, *p, sceneGeometry, numParticles);

    else if (const auto* p = dynamic_cast<const ItemWithParticles*>(item))
        // visualize one generalized particle (simple particle or core/shell or compound or meso..)
        translateContainer(model, particlesFromItem(*p), numParticles);
    else
        ASSERT_NEVER;
}

void RealspaceBuilder::populateSample(Model* model, const SampleItem& sampleItem,
                                      const SceneGeometry& sceneGeometry,
                                      unsigned& numParticles) const
{
    populateStack(model, sampleItem.outerStackItem(), sampleItem, sceneGeometry, numParticles);
}

void RealspaceBuilder::populateStack(Img3D::Model* model, const LayerStackItem& stackItem,
                                     const SampleItem& sampleItem,
                                     const SceneGeometry& sceneGeometry,
                                     unsigned int& numParticles) const
{
    std::vector<LayerItem*> stack_layers = stackItem.unwrappedLayerItems();
    if (stack_layers.empty())
        return;

    // find part of the sample, occupied by the first instance of the stack counting from top
    std::vector<LayerItem*> all_layers = sampleItem.outerStackItem().unwrappedLayerItems();
    const int i_begin = Vec::indexOfPtr(stack_layers.front(), all_layers);
    ASSERT(i_begin >= 0);
    const size_t i_end = i_begin + stack_layers.size();
    ASSERT(i_end <= all_layers.size());

    // generate roughness maps corresponding to the given stack
    sampleItem.adjustLayerSeeds(false);
    std::unique_ptr<Sample> sample = GUI::ToCore::itemToSample(sampleItem);
    OwningVector<const double2d_t> rough_maps;
    for (size_t i = i_begin; i <= i_end; i++) {
        if ((i < i_end && all_layers[i]->isAmbient()) || i == all_layers.size()
            || !sampleItem.showRoughness)
            rough_maps.push_back(nullptr); // top interface of fronting or bottom of substrate
        else
            rough_maps.push_back(
                ::roughnessMap(*sample, i, sceneGeometry, sampleItem.seeds[i]).release());
    }

    double total_height = 0;
    for (size_t i = 0; i < stack_layers.size(); i++) {
        const LayerItem* layer = stack_layers[i];
        const bool drawBottom = (i + 1 == stack_layers.size());
        populateLayer(model, *layer, sampleItem, sceneGeometry, numParticles,
                      F3(0, 0, static_cast<float>(-total_height)), rough_maps[i], rough_maps[i + 1],
                      drawBottom, false);
        if (!layer->isAmbient())
            total_height += ::visualLayerThickness(*layer, sceneGeometry);
    }
}

void RealspaceBuilder::populateLayer(Model* model, const LayerItem& layerItem,
                                     const SampleItem& sampleItem,
                                     const SceneGeometry& sceneGeometry, unsigned& numParticles,
                                     const F3& origin, const double2d_t* topRoughMap,
                                     const double2d_t* bottomRoughMap, bool drawBottom,
                                     bool independentLayer) const
{
    F3 shift(0, 0, 30); // absolute vertical position of sample

    std::unique_ptr<Img3D::Layer> layer;

    if (independentLayer && sampleItem.showRoughness) { // individual layer visualization
        sampleItem.adjustLayerSeeds(false);
        std::vector<LayerItem*> all_layers = sampleItem.outerStackItem().unwrappedLayerItems();
        const int i_layer = Vec::indexOfPtr(&layerItem, all_layers);
        ASSERT(i_layer >= 0);

        std::unique_ptr<Sample> sample = GUI::ToCore::itemToSample(sampleItem);
        auto new_topRoughMap =
            ::roughnessMap(*sample, i_layer, sceneGeometry, sampleItem.seeds[i_layer]);

        std::unique_ptr<const double2d_t> new_bottomRoughMap;
        const size_t i_layer_below = i_layer + 1;
        if (i_layer_below < all_layers.size())
            new_bottomRoughMap = ::roughnessMap(*sample, i_layer_below, sceneGeometry,
                                                sampleItem.seeds[i_layer_below]);

        layer = ::createLayer(layerItem, sceneGeometry, origin + shift, new_topRoughMap.get(),
                              new_bottomRoughMap.get(), drawBottom);
    } else {
        layer = ::createLayer(layerItem, sceneGeometry, origin + shift, topRoughMap, bottomRoughMap,
                              drawBottom);
    }

    if (layer && !layerItem.isAmbient())
        model->emplaceTransparentBody(layer.release());

    for (ParticleLayoutItem* layout : layerItem.layoutItems())
        populateLayout(model, *layout, sceneGeometry, numParticles, origin + shift);
}

void RealspaceBuilder::populateLayout(Model* model, const ParticleLayoutItem& layoutItem,
                                      const SceneGeometry& sceneGeometry, unsigned& numParticles,
                                      const F3& origin) const
{
    if (layoutItem.itemsWithParticles().empty())
        return;

    const double layer_size = sceneGeometry.layerSize;
    const double total_density = layoutItem.totalDensityValue();

    auto particle3DContainer_vector = particle3DContainerVector(layoutItem, origin);
    auto* interferenceItem = layoutItem.interferenceSelection().certainItem();
    std::unique_ptr<IInterference> iff;
    if (interferenceItem)
        iff = interferenceItem->createInterference();

    const auto latticePositions =
        ::generatePositions(iff.get(), layer_size, total_density, layoutItem.seed);
    populateParticlesInLattice(latticePositions, particle3DContainer_vector, model, sceneGeometry,
                               numParticles, layoutItem.seed);
}

std::vector<Img3D::Particle3DContainer>
RealspaceBuilder::particle3DContainerVector(const ParticleLayoutItem& layoutItem,
                                            const F3& origin) const
{
    double total_abundance = 0;
    for (const auto* particle : layoutItem.itemsWithParticles())
        total_abundance += particle->abundance().dVal();

    double cumulative_abundance = 0;
    std::vector<Particle3DContainer> result;

    for (auto* particleItem : layoutItem.itemsWithParticles()) {
        Particle3DContainer out = particlesFromItem(*particleItem, total_abundance, origin);

        cumulative_abundance += out.cumulativeAbundance();
        out.setCumulativeAbundance(cumulative_abundance);

        result.emplace_back(std::move(out));
    }

    return result;
}

Img3D::Particle3DContainer
RealspaceBuilder::particlesFromItem(const ItemWithParticles& particleItem, double total_abundance,
                                    const Img3D::F3& origin) const
{
    if (const auto* item = dynamic_cast<const ParticleItem*>(&particleItem)) {
        auto particle = item->createParticle();
        return m_builder_utils->singleParticle3DContainer(*particle, total_abundance, origin);

    } else if (const auto* item = dynamic_cast<const CoreAndShellItem*>(&particleItem)) {
        if (!item->coreItem() || !item->shellItem())
            return {};
        auto particle = item->createCoreAndShell();
        return m_builder_utils->particleCoreShell3DContainer(*particle, total_abundance, origin);

    } else if (const auto* item = dynamic_cast<const CompoundItem*>(&particleItem)) {
        if (item->itemsWithParticles().empty())
            return {};
        auto particle = item->createCompound();
        return m_builder_utils->particleComposition3DContainer(*particle, total_abundance, origin);

    } else if (const auto* item = dynamic_cast<const MesocrystalItem*>(&particleItem)) {
        if (!item->basisItem())
            return {};
        return m_builder_utils->mesocrystal3DContainer(item->createMesocrystal().get(),
                                                       total_abundance, origin);

    } else
        ASSERT_NEVER;
}

void RealspaceBuilder::translateContainer(Model* model,
                                          const Particle3DContainer& particle3DContainer,
                                          unsigned int& numParticles,
                                          const F3& lattice_position) const
{
    numParticles += particle3DContainer.containerSize();

    for (size_t i = 0; i < particle3DContainer.containerSize(); ++i) {
        auto particle3D = particle3DContainer.createParticle(i);
        ASSERT(particle3D);
        particle3D->addTranslation(lattice_position);
        if (particle3D->isTransparent())
            model->emplaceTransparentBody(particle3D.release());
        else
            model->emplaceSolidBody(particle3D.release());
    }
}

void RealspaceBuilder::populateParticlesInLattice(
    const double2d_t& lattice_positions,
    const std::vector<Particle3DContainer>& particle3DContainer_vector, Model* model,
    const SceneGeometry& sceneGeometry, unsigned& numParticles, int seed) const
{
    const double layer_border_width = sceneGeometry.layerBorderWidth;
    const double layer_size = sceneGeometry.layerSize;
    const double layer_thickness = sceneGeometry.topOrBottomLayerThickness;

    std::random_device rd;
    std::mt19937 gen(seed < 0 ? rd() : seed);
    std::uniform_real_distribution<double> uniformDist(0, 1);

    for (std::vector<double> position : lattice_positions) {
        // for random selection of particles based on their abundances
        double rand_num = uniformDist(gen);
        for (const auto& particle3DContainer : particle3DContainer_vector) {
            if (rand_num <= particle3DContainer.cumulativeAbundance()) {
                // lattice position + location (TO BE ADDED)
                double pos_x = position[0];
                double pos_y = position[1];
                double pos_z = 0;

                if (std::abs(pos_x) <= layer_size - 2 * layer_border_width
                    && std::abs(pos_y) <= layer_size - 2 * layer_border_width
                    && std::abs(pos_z) <= layer_thickness) {
                    translateContainer(model, particle3DContainer, numParticles,
                                       Img3D::F3fromR3({position[0], position[1], 0}));
                }
                break;
            }
        }
    }
}