1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Param/Distrib/Distributions.cpp
//! @brief Implements classes representing one-dimensional distributions.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Param/Distrib/Distributions.h"
#include "Base/Py/PyFmt.h"
#include "Base/Util/Assert.h"
#include "Param/Distrib/ParameterSample.h"
#include <cmath>
#include <limits>
#include <numbers>
#include <sstream>
using std::numbers::pi;
namespace {
bool DoubleEqual(double a, double b)
{
double eps = 10.0
* std::max(std::abs(a) * std::numeric_limits<double>::epsilon(),
std::numeric_limits<double>::min());
return std::abs(a - b) < eps;
}
std::vector<double> equidistantPointsInRange(size_t n_samples, double xmin, double xmax)
{
if (n_samples < 2 || DoubleEqual(xmin, xmax))
return {(xmin + xmax) / 2};
std::vector<double> result(n_samples);
for (size_t i = 0; i < n_samples; ++i)
result[i] = xmin + i * (xmax - xmin) / (n_samples - 1.0);
return result;
}
} // namespace
// ************************************************************************************************
// class IDistribution1D
// ************************************************************************************************
IDistribution1D::IDistribution1D(const std::vector<double>& PValues, size_t n_samples,
double rel_sampling_width)
: INode(PValues)
, m_n_samples(n_samples)
, m_relative_sampling_width(rel_sampling_width)
{
}
size_t IDistribution1D::nSamples() const
{
return isDelta() ? 1L : m_n_samples;
}
std::vector<ParameterSample> IDistribution1D::samplesInRange(double xmin, double xmax) const
{
const size_t N = nSamples();
ASSERT(N > 0);
if (N == 1)
return {{(xmin + xmax) / 2, 1.}};
std::vector<ParameterSample> result;
result.reserve(N);
double wgt = 0;
for (size_t i = 0; i < N; ++i) {
const double x = xmin + (xmax - xmin) * (i) / (N - 1);
result.push_back({x, probabilityDensity(x)});
wgt += probabilityDensity(x);
}
for (size_t i = 0; i < N; ++i)
result[i].weight /= wgt;
return result;
}
std::vector<std::pair<double, double>> IDistribution1D::plotGraph() const
{
size_t N = 400;
std::vector<std::pair<double, double>> result(N);
const auto [xmin, xmax] = plotRange();
for (size_t i = 0; i < N; ++i) {
const double x = xmin + i * (xmax - xmin) / (N - 1);
result[i] = {x, probabilityDensity(x)};
}
return result;
}
std::pair<double, double> IDistribution1D::plotRange() const
{
throw std::runtime_error(
"This distribution is not defined by a finite range. Therefore cannot be displayed");
}
// ************************************************************************************************
// class DistributionGate
// ************************************************************************************************
DistributionGate::DistributionGate(const std::vector<double> P, size_t n_samples)
: IDistribution1D(P, n_samples, 1.)
, m_min(m_P[0])
, m_max(m_P[1])
{
validateOrThrow();
}
DistributionGate::DistributionGate(double min, double max, size_t n_samples)
: DistributionGate(std::vector<double>{min, max}, n_samples)
{
}
DistributionGate* DistributionGate::clone() const
{
return new DistributionGate(pars(), m_n_samples);
}
double DistributionGate::probabilityDensity(double x) const
{
if (x < m_min || x > m_max)
return 0.0;
ASSERT(!isDelta());
return 1.0 / (m_max - m_min);
}
void DistributionGate::setMean(double val)
{
double shift = val - mean();
m_P[0] += shift; // min
m_P[1] += shift; // max
validateOrThrow();
}
bool DistributionGate::isDelta() const
{
return m_min == m_max;
}
std::vector<ParameterSample> DistributionGate::distributionSamples() const
{
std::vector<double> xx = equidistantPointsInRange(nSamples(), m_min, m_max);
std::vector<ParameterSample> result;
result.reserve(xx.size());
for (double x : xx)
result.push_back({x, 1. / xx.size()});
return result;
}
std::string DistributionGate::validate() const
{
if (m_max < m_min)
return jointError({"parameters violate condition min<=max"});
m_validated = true;
return "";
}
std::pair<double, double> DistributionGate::plotRange() const
{
const double margin = std::abs(m_max - m_min) / 10;
return {m_min - margin, m_max + margin};
}
// ************************************************************************************************
// class DistributionLorentz
// ************************************************************************************************
DistributionLorentz::DistributionLorentz(const std::vector<double> P, size_t n_samples,
double rel_sampling_width)
: IDistribution1D(P, n_samples, rel_sampling_width)
, m_mean(m_P[0])
, m_hwhm(m_P[1])
{
validateOrThrow();
}
DistributionLorentz::DistributionLorentz(double mean, double hwhm, size_t n_samples,
double rel_sampling_width)
: DistributionLorentz(std::vector<double>{mean, hwhm}, n_samples, rel_sampling_width)
{
}
DistributionLorentz* DistributionLorentz::clone() const
{
return new DistributionLorentz(pars(), m_n_samples, relSamplingWidth());
}
double DistributionLorentz::probabilityDensity(double x) const
{
ASSERT(m_validated);
ASSERT(!isDelta());
return m_hwhm / (m_hwhm * m_hwhm + (x - m_mean) * (x - m_mean)) / pi;
}
void DistributionLorentz::setMean(double val)
{
m_P[0] = val; // mean
validateOrThrow();
}
bool DistributionLorentz::isDelta() const
{
return m_hwhm == 0.0;
}
std::vector<ParameterSample> DistributionLorentz::distributionSamples() const
{
ASSERT(m_hwhm >= 0);
const double range = m_hwhm * relSamplingWidth();
return samplesInRange(m_mean - range, m_mean + range);
}
std::pair<double, double> DistributionLorentz::plotRange() const
{
return {m_mean - 4 * m_hwhm, m_mean + 4 * m_hwhm};
}
std::string DistributionLorentz::validate() const
{
std::vector<std::string> errs;
requestGe0(errs, m_hwhm, "hwhm");
if (!errs.empty())
return jointError(errs);
m_validated = true;
return "";
}
// ************************************************************************************************
// class DistributionGaussian
// ************************************************************************************************
DistributionGaussian::DistributionGaussian(const std::vector<double> P, size_t n_samples,
double rel_sampling_width)
: IDistribution1D(P, n_samples, rel_sampling_width)
, m_mean(m_P[0])
, m_std_dev(m_P[1])
{
validateOrThrow();
if (m_std_dev < 0.0)
throw std::runtime_error("DistributionGaussian: std_dev < 0");
}
DistributionGaussian::DistributionGaussian(double mean, double std_dev, size_t n_samples,
double rel_sampling_width)
: DistributionGaussian(std::vector<double>{mean, std_dev}, n_samples, rel_sampling_width)
{
}
DistributionGaussian* DistributionGaussian::clone() const
{
return new DistributionGaussian(pars(), m_n_samples, relSamplingWidth());
}
double DistributionGaussian::probabilityDensity(double x) const
{
ASSERT(m_validated);
ASSERT(!isDelta());
double exponential = std::exp(-(x - m_mean) * (x - m_mean) / (2.0 * m_std_dev * m_std_dev));
return exponential / m_std_dev / std::sqrt((2 * pi));
}
void DistributionGaussian::setMean(double val)
{
m_P[0] = val; // mean
validateOrThrow();
}
bool DistributionGaussian::isDelta() const
{
return m_std_dev == 0.0;
}
std::string DistributionGaussian::validate() const
{
std::vector<std::string> errs;
requestGe0(errs, m_std_dev, "stdv");
if (!errs.empty())
return jointError(errs);
m_validated = true;
return "";
}
std::pair<double, double> DistributionGaussian::plotRange() const
{
return {m_mean - 3 * m_std_dev, m_mean + 3 * m_std_dev};
}
std::vector<ParameterSample> DistributionGaussian::distributionSamples() const
{
ASSERT(m_std_dev >= 0);
const double range = m_std_dev * relSamplingWidth();
return samplesInRange(m_mean - range, m_mean + range);
}
// ************************************************************************************************
// class DistributionLogNormal
// ************************************************************************************************
DistributionLogNormal::DistributionLogNormal(const std::vector<double> P, size_t n_samples,
double rel_sampling_width)
: IDistribution1D(P, n_samples, rel_sampling_width)
, m_median(m_P[0])
, m_scale_param(m_P[1])
{
validateOrThrow();
}
DistributionLogNormal::DistributionLogNormal(double median, double scale_param, size_t n_samples,
double rel_sampling_width)
: DistributionLogNormal(std::vector<double>{median, scale_param}, n_samples, rel_sampling_width)
{
}
DistributionLogNormal* DistributionLogNormal::clone() const
{
return new DistributionLogNormal(pars(), m_n_samples, relSamplingWidth());
}
double DistributionLogNormal::probabilityDensity(double x) const
{
ASSERT(m_validated);
ASSERT(!isDelta());
double t = std::log(x / m_median) / m_scale_param;
return std::exp(-t * t / 2.0) / (x * m_scale_param * std::sqrt((2 * pi)));
}
double DistributionLogNormal::mean() const
{
ASSERT(m_validated);
double exponent = m_scale_param * m_scale_param / 2.0;
return m_median * std::exp(exponent);
}
void DistributionLogNormal::setMean(double val)
{
m_P[0] = val; // median
validateOrThrow();
}
bool DistributionLogNormal::isDelta() const
{
return m_scale_param == 0.0;
}
std::vector<ParameterSample> DistributionLogNormal::distributionSamples() const
{
ASSERT(m_scale_param >= 0);
const double range = m_scale_param * relSamplingWidth();
double xmin = m_median * std::exp(-range);
double xmax = m_median * std::exp(range);
return samplesInRange(xmin, xmax);
}
std::string DistributionLogNormal::validate() const
{
std::vector<std::string> errs;
requestGe0(errs, m_scale_param, "scale_param");
requestGt0(errs, m_median, "median");
if (!errs.empty())
return jointError(errs);
m_validated = true;
return "";
}
std::pair<double, double> DistributionLogNormal::plotRange() const
{
double xmin = m_median * std::exp(-3 * m_scale_param);
double xmax = m_median * std::exp(3 * m_scale_param);
return {xmin, xmax};
}
// ************************************************************************************************
// class DistributionCosine
// ************************************************************************************************
DistributionCosine::DistributionCosine(const std::vector<double> P, size_t n_samples)
: IDistribution1D(P, n_samples)
, m_mean(m_P[0])
, m_hwhm(m_P[1])
{
validateOrThrow();
}
DistributionCosine::DistributionCosine(double mean, double sigma, size_t n_samples)
: DistributionCosine(std::vector<double>{mean, sigma}, n_samples)
{
}
DistributionCosine* DistributionCosine::clone() const
{
return new DistributionCosine(pars(), m_n_samples);
}
double DistributionCosine::probabilityDensity(double x) const
{
ASSERT(m_validated);
ASSERT(!isDelta());
if (std::abs(x - m_mean) > pi * m_hwhm)
return 0.0;
return (1.0 + std::cos(((x - m_mean) / m_hwhm) * (pi / 2))) / (4 * m_hwhm);
}
void DistributionCosine::setMean(double val)
{
m_P[0] = val; // mean
validateOrThrow();
}
bool DistributionCosine::isDelta() const
{
return m_hwhm == 0.0;
}
std::string DistributionCosine::validate() const
{
std::vector<std::string> errs;
requestGe0(errs, m_hwhm, "hwhm");
if (!errs.empty())
return jointError(errs);
m_validated = true;
return "";
}
std::vector<ParameterSample> DistributionCosine::distributionSamples() const
{
auto [xmin, xmax] = plotRange();
return samplesInRange(xmin, xmax);
}
std::pair<double, double> DistributionCosine::plotRange() const
{
double xmin = m_mean - 2 * m_hwhm;
double xmax = m_mean + 2 * m_hwhm;
return {xmin, xmax};
}
|