File: Distributions.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (445 lines) | stat: -rw-r--r-- 12,913 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Param/Distrib/Distributions.cpp
//! @brief     Implements classes representing one-dimensional distributions.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Param/Distrib/Distributions.h"
#include "Base/Py/PyFmt.h"
#include "Base/Util/Assert.h"
#include "Param/Distrib/ParameterSample.h"
#include <cmath>
#include <limits>
#include <numbers>
#include <sstream>

using std::numbers::pi;

namespace {

bool DoubleEqual(double a, double b)
{
    double eps = 10.0
                 * std::max(std::abs(a) * std::numeric_limits<double>::epsilon(),
                            std::numeric_limits<double>::min());
    return std::abs(a - b) < eps;
}

std::vector<double> equidistantPointsInRange(size_t n_samples, double xmin, double xmax)
{
    if (n_samples < 2 || DoubleEqual(xmin, xmax))
        return {(xmin + xmax) / 2};
    std::vector<double> result(n_samples);
    for (size_t i = 0; i < n_samples; ++i)
        result[i] = xmin + i * (xmax - xmin) / (n_samples - 1.0);
    return result;
}

} // namespace


//  ************************************************************************************************
//  class IDistribution1D
//  ************************************************************************************************

IDistribution1D::IDistribution1D(const std::vector<double>& PValues, size_t n_samples,
                                 double rel_sampling_width)
    : INode(PValues)
    , m_n_samples(n_samples)
    , m_relative_sampling_width(rel_sampling_width)
{
}

size_t IDistribution1D::nSamples() const
{
    return isDelta() ? 1L : m_n_samples;
}

std::vector<ParameterSample> IDistribution1D::samplesInRange(double xmin, double xmax) const
{
    const size_t N = nSamples();
    ASSERT(N > 0);
    if (N == 1)
        return {{(xmin + xmax) / 2, 1.}};

    std::vector<ParameterSample> result;
    result.reserve(N);
    double wgt = 0;
    for (size_t i = 0; i < N; ++i) {
        const double x = xmin + (xmax - xmin) * (i) / (N - 1);
        result.push_back({x, probabilityDensity(x)});
        wgt += probabilityDensity(x);
    }
    for (size_t i = 0; i < N; ++i)
        result[i].weight /= wgt;
    return result;
}

std::vector<std::pair<double, double>> IDistribution1D::plotGraph() const
{
    size_t N = 400;
    std::vector<std::pair<double, double>> result(N);
    const auto [xmin, xmax] = plotRange();
    for (size_t i = 0; i < N; ++i) {
        const double x = xmin + i * (xmax - xmin) / (N - 1);
        result[i] = {x, probabilityDensity(x)};
    }
    return result;
}

std::pair<double, double> IDistribution1D::plotRange() const
{
    throw std::runtime_error(
        "This distribution is not defined by a finite range. Therefore cannot be displayed");
}

//  ************************************************************************************************
//  class DistributionGate
//  ************************************************************************************************

DistributionGate::DistributionGate(const std::vector<double> P, size_t n_samples)
    : IDistribution1D(P, n_samples, 1.)
    , m_min(m_P[0])
    , m_max(m_P[1])
{
    validateOrThrow();
}

DistributionGate::DistributionGate(double min, double max, size_t n_samples)
    : DistributionGate(std::vector<double>{min, max}, n_samples)
{
}

DistributionGate* DistributionGate::clone() const
{
    return new DistributionGate(pars(), m_n_samples);
}

double DistributionGate::probabilityDensity(double x) const
{
    if (x < m_min || x > m_max)
        return 0.0;
    ASSERT(!isDelta());
    return 1.0 / (m_max - m_min);
}

void DistributionGate::setMean(double val)
{
    double shift = val - mean();
    m_P[0] += shift; // min
    m_P[1] += shift; // max
    validateOrThrow();
}

bool DistributionGate::isDelta() const
{
    return m_min == m_max;
}

std::vector<ParameterSample> DistributionGate::distributionSamples() const
{
    std::vector<double> xx = equidistantPointsInRange(nSamples(), m_min, m_max);
    std::vector<ParameterSample> result;
    result.reserve(xx.size());
    for (double x : xx)
        result.push_back({x, 1. / xx.size()});
    return result;
}

std::string DistributionGate::validate() const
{
    if (m_max < m_min)
        return jointError({"parameters violate condition min<=max"});
    m_validated = true;
    return "";
}

std::pair<double, double> DistributionGate::plotRange() const
{
    const double margin = std::abs(m_max - m_min) / 10;
    return {m_min - margin, m_max + margin};
}


//  ************************************************************************************************
//  class DistributionLorentz
//  ************************************************************************************************

DistributionLorentz::DistributionLorentz(const std::vector<double> P, size_t n_samples,
                                         double rel_sampling_width)
    : IDistribution1D(P, n_samples, rel_sampling_width)
    , m_mean(m_P[0])
    , m_hwhm(m_P[1])
{
    validateOrThrow();
}

DistributionLorentz::DistributionLorentz(double mean, double hwhm, size_t n_samples,
                                         double rel_sampling_width)
    : DistributionLorentz(std::vector<double>{mean, hwhm}, n_samples, rel_sampling_width)
{
}

DistributionLorentz* DistributionLorentz::clone() const
{
    return new DistributionLorentz(pars(), m_n_samples, relSamplingWidth());
}

double DistributionLorentz::probabilityDensity(double x) const
{
    ASSERT(m_validated);
    ASSERT(!isDelta());
    return m_hwhm / (m_hwhm * m_hwhm + (x - m_mean) * (x - m_mean)) / pi;
}

void DistributionLorentz::setMean(double val)
{
    m_P[0] = val; // mean
    validateOrThrow();
}

bool DistributionLorentz::isDelta() const
{
    return m_hwhm == 0.0;
}

std::vector<ParameterSample> DistributionLorentz::distributionSamples() const
{
    ASSERT(m_hwhm >= 0);
    const double range = m_hwhm * relSamplingWidth();
    return samplesInRange(m_mean - range, m_mean + range);
}

std::pair<double, double> DistributionLorentz::plotRange() const
{
    return {m_mean - 4 * m_hwhm, m_mean + 4 * m_hwhm};
}

std::string DistributionLorentz::validate() const
{
    std::vector<std::string> errs;
    requestGe0(errs, m_hwhm, "hwhm");
    if (!errs.empty())
        return jointError(errs);
    m_validated = true;
    return "";
}


//  ************************************************************************************************
//  class DistributionGaussian
//  ************************************************************************************************

DistributionGaussian::DistributionGaussian(const std::vector<double> P, size_t n_samples,
                                           double rel_sampling_width)
    : IDistribution1D(P, n_samples, rel_sampling_width)
    , m_mean(m_P[0])
    , m_std_dev(m_P[1])
{
    validateOrThrow();
    if (m_std_dev < 0.0)
        throw std::runtime_error("DistributionGaussian: std_dev < 0");
}

DistributionGaussian::DistributionGaussian(double mean, double std_dev, size_t n_samples,
                                           double rel_sampling_width)
    : DistributionGaussian(std::vector<double>{mean, std_dev}, n_samples, rel_sampling_width)
{
}

DistributionGaussian* DistributionGaussian::clone() const
{
    return new DistributionGaussian(pars(), m_n_samples, relSamplingWidth());
}

double DistributionGaussian::probabilityDensity(double x) const
{
    ASSERT(m_validated);
    ASSERT(!isDelta());
    double exponential = std::exp(-(x - m_mean) * (x - m_mean) / (2.0 * m_std_dev * m_std_dev));
    return exponential / m_std_dev / std::sqrt((2 * pi));
}

void DistributionGaussian::setMean(double val)
{
    m_P[0] = val; // mean
    validateOrThrow();
}

bool DistributionGaussian::isDelta() const
{
    return m_std_dev == 0.0;
}

std::string DistributionGaussian::validate() const
{
    std::vector<std::string> errs;
    requestGe0(errs, m_std_dev, "stdv");
    if (!errs.empty())
        return jointError(errs);
    m_validated = true;
    return "";
}

std::pair<double, double> DistributionGaussian::plotRange() const
{
    return {m_mean - 3 * m_std_dev, m_mean + 3 * m_std_dev};
}

std::vector<ParameterSample> DistributionGaussian::distributionSamples() const
{
    ASSERT(m_std_dev >= 0);
    const double range = m_std_dev * relSamplingWidth();
    return samplesInRange(m_mean - range, m_mean + range);
}


//  ************************************************************************************************
//  class DistributionLogNormal
//  ************************************************************************************************

DistributionLogNormal::DistributionLogNormal(const std::vector<double> P, size_t n_samples,
                                             double rel_sampling_width)
    : IDistribution1D(P, n_samples, rel_sampling_width)
    , m_median(m_P[0])
    , m_scale_param(m_P[1])
{
    validateOrThrow();
}

DistributionLogNormal::DistributionLogNormal(double median, double scale_param, size_t n_samples,
                                             double rel_sampling_width)
    : DistributionLogNormal(std::vector<double>{median, scale_param}, n_samples, rel_sampling_width)
{
}

DistributionLogNormal* DistributionLogNormal::clone() const
{
    return new DistributionLogNormal(pars(), m_n_samples, relSamplingWidth());
}

double DistributionLogNormal::probabilityDensity(double x) const
{
    ASSERT(m_validated);
    ASSERT(!isDelta());
    double t = std::log(x / m_median) / m_scale_param;
    return std::exp(-t * t / 2.0) / (x * m_scale_param * std::sqrt((2 * pi)));
}

double DistributionLogNormal::mean() const
{
    ASSERT(m_validated);
    double exponent = m_scale_param * m_scale_param / 2.0;
    return m_median * std::exp(exponent);
}

void DistributionLogNormal::setMean(double val)
{
    m_P[0] = val; // median
    validateOrThrow();
}

bool DistributionLogNormal::isDelta() const
{
    return m_scale_param == 0.0;
}

std::vector<ParameterSample> DistributionLogNormal::distributionSamples() const
{
    ASSERT(m_scale_param >= 0);
    const double range = m_scale_param * relSamplingWidth();
    double xmin = m_median * std::exp(-range);
    double xmax = m_median * std::exp(range);
    return samplesInRange(xmin, xmax);
}

std::string DistributionLogNormal::validate() const
{
    std::vector<std::string> errs;
    requestGe0(errs, m_scale_param, "scale_param");
    requestGt0(errs, m_median, "median");
    if (!errs.empty())
        return jointError(errs);
    m_validated = true;
    return "";
}

std::pair<double, double> DistributionLogNormal::plotRange() const
{
    double xmin = m_median * std::exp(-3 * m_scale_param);
    double xmax = m_median * std::exp(3 * m_scale_param);
    return {xmin, xmax};
}

//  ************************************************************************************************
//  class DistributionCosine
//  ************************************************************************************************

DistributionCosine::DistributionCosine(const std::vector<double> P, size_t n_samples)
    : IDistribution1D(P, n_samples)
    , m_mean(m_P[0])
    , m_hwhm(m_P[1])
{
    validateOrThrow();
}

DistributionCosine::DistributionCosine(double mean, double sigma, size_t n_samples)
    : DistributionCosine(std::vector<double>{mean, sigma}, n_samples)
{
}

DistributionCosine* DistributionCosine::clone() const
{
    return new DistributionCosine(pars(), m_n_samples);
}

double DistributionCosine::probabilityDensity(double x) const
{
    ASSERT(m_validated);
    ASSERT(!isDelta());
    if (std::abs(x - m_mean) > pi * m_hwhm)
        return 0.0;
    return (1.0 + std::cos(((x - m_mean) / m_hwhm) * (pi / 2))) / (4 * m_hwhm);
}

void DistributionCosine::setMean(double val)
{
    m_P[0] = val; // mean
    validateOrThrow();
}

bool DistributionCosine::isDelta() const
{
    return m_hwhm == 0.0;
}

std::string DistributionCosine::validate() const
{
    std::vector<std::string> errs;
    requestGe0(errs, m_hwhm, "hwhm");
    if (!errs.empty())
        return jointError(errs);
    m_validated = true;
    return "";
}

std::vector<ParameterSample> DistributionCosine::distributionSamples() const
{
    auto [xmin, xmax] = plotRange();
    return samplesInRange(xmin, xmax);
}

std::pair<double, double> DistributionCosine::plotRange() const
{
    double xmin = m_mean - 2 * m_hwhm;
    double xmax = m_mean + 2 * m_hwhm;
    return {xmin, xmax};
}