1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Param/Distrib/Distributions.h
//! @brief Defines classes representing one-dimensional distributions.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#ifndef BORNAGAIN_PARAM_DISTRIB_DISTRIBUTIONS_H
#define BORNAGAIN_PARAM_DISTRIB_DISTRIBUTIONS_H
#include "Base/Type/ICloneable.h"
#include "Param/Node/INode.h"
#include <vector>
struct ParameterSample;
// ************************************************************************************************
// interface IDistribution1D
// ************************************************************************************************
//! Interface for one-dimensional distributions.
class IDistribution1D : public ICloneable, public INode {
public:
IDistribution1D(const std::vector<double>& PValues, size_t n_samples,
double rel_sampling_width = 1.);
void setNSamples(size_t n) { m_n_samples = n; }
void setRelSamplingWidth(double w) { m_relative_sampling_width = w; }
virtual std::vector<ParameterSample> distributionSamples() const = 0;
#ifndef SWIG
IDistribution1D* clone() const override = 0;
//! Returns the distribution-specific probability density for value x.
virtual double probabilityDensity(double x) const = 0;
//! Returns the distribution-specific mean.
virtual double mean() const = 0;
//! Sets the distribution-specific mean.
virtual void setMean(double val) = 0;
//! Returns true if the distribution is in the limit case of a Dirac delta distribution.
virtual bool isDelta() const = 0;
virtual std::vector<std::pair<double, double>> plotGraph() const;
size_t nSamples() const;
double relSamplingWidth() const { return m_relative_sampling_width; }
protected:
std::vector<ParameterSample> samplesInRange(double xmin, double xmax) const;
size_t m_n_samples;
private:
//! Returns a range that is suitable for plotting the pdf.
virtual std::pair<double, double> plotRange() const;
double m_relative_sampling_width;
#endif // SWIG
};
// ************************************************************************************************
// class DistributionGate
// ************************************************************************************************
//! Uniform distribution function with half width hwhm.
class DistributionGate : public IDistribution1D {
public:
DistributionGate(std::vector<double> P, size_t n_samples);
DistributionGate(double min, double max, size_t n_samples = 25);
std::string className() const final { return "DistributionGate"; }
std::vector<ParameterSample> distributionSamples() const override;
#ifndef SWIG
DistributionGate* clone() const override;
std::vector<ParaMeta> parDefs() const final { return {{"Min", ""}, {"Max", ""}}; }
double probabilityDensity(double x) const override;
double mean() const override { return (m_min + m_max) / 2.0; }
void setMean(double val) override;
double min() const { return m_min; }
double max() const { return m_max; }
bool isDelta() const override;
std::string validate() const override;
private:
std::pair<double, double> plotRange() const override;
const double& m_min;
const double& m_max;
#endif // SWIG
};
// ************************************************************************************************
// class DistributionLorentz
// ************************************************************************************************
//! Lorentz distribution with half width hwhm.
class DistributionLorentz : public IDistribution1D {
public:
DistributionLorentz(std::vector<double> P, size_t n_samples, double rel_sampling_width);
DistributionLorentz(double mean, double hwhm, size_t n_samples = 25,
double rel_sampling_width = 2.);
std::string className() const final { return "DistributionLorentz"; }
std::vector<ParameterSample> distributionSamples() const override;
#ifndef SWIG
DistributionLorentz* clone() const override;
std::vector<ParaMeta> parDefs() const final { return {{"Mean", ""}, {"HWHM", ""}}; }
double probabilityDensity(double x) const override;
double mean() const override { return m_mean; }
void setMean(double val) override;
double hwhm() const { return m_hwhm; }
bool isDelta() const override;
std::string validate() const override;
private:
std::pair<double, double> plotRange() const override;
const double& m_mean;
const double& m_hwhm;
#endif // SWIG
};
// ************************************************************************************************
// class DistributionGaussian
// ************************************************************************************************
//! Gaussian distribution with standard deviation std_dev.
class DistributionGaussian : public IDistribution1D {
public:
DistributionGaussian(std::vector<double> P, size_t n_samples, double rel_sampling_width);
DistributionGaussian(double mean, double std_dev, size_t n_samples = 25,
double rel_sampling_width = 2.);
std::string className() const final { return "DistributionGaussian"; }
std::vector<ParameterSample> distributionSamples() const override;
#ifndef SWIG
DistributionGaussian* clone() const override;
std::vector<ParaMeta> parDefs() const final { return {{"Mean", ""}, {"StdDev", ""}}; }
double probabilityDensity(double x) const override;
double mean() const override { return m_mean; }
void setMean(double val) override;
double getStdDev() const { return m_std_dev; }
bool isDelta() const override;
std::string validate() const override;
private:
std::pair<double, double> plotRange() const override;
const double& m_mean;
const double& m_std_dev;
#endif // SWIG
};
// ************************************************************************************************
// class DistributionLogNormal
// ************************************************************************************************
//! Log-normal distribution.
class DistributionLogNormal : public IDistribution1D {
public:
DistributionLogNormal(std::vector<double> P, size_t n_samples, double rel_sampling_width);
DistributionLogNormal(double median, double scale_param, size_t n_samples = 25,
double rel_sampling_width = 2.);
std::string className() const final { return "DistributionLogNormal"; }
std::vector<ParameterSample> distributionSamples() const override;
#ifndef SWIG
DistributionLogNormal* clone() const override;
std::vector<ParaMeta> parDefs() const final { return {{"Median", ""}, {"ScaleParameter", ""}}; }
double probabilityDensity(double x) const override;
double mean() const override;
void setMean(double val) override;
double getMedian() const { return m_median; }
double getScalePar() const { return m_scale_param; }
bool isDelta() const override;
std::string validate() const override;
private:
std::pair<double, double> plotRange() const override;
const double& m_median;
const double& m_scale_param;
#endif // SWIG
};
// ************************************************************************************************
// class DistributionCosine
// ************************************************************************************************
//! Cosine distribution.
class DistributionCosine : public IDistribution1D {
public:
DistributionCosine(std::vector<double> P, size_t n_samples);
DistributionCosine(double mean, double sigma, size_t n_samples = 25);
std::string className() const final { return "DistributionCosine"; }
std::vector<ParameterSample> distributionSamples() const override;
#ifndef SWIG
DistributionCosine* clone() const override;
std::vector<ParaMeta> parDefs() const final { return {{"Mean", ""}, {"HWHM", ""}}; }
double probabilityDensity(double x) const override;
double mean() const override { return m_mean; }
void setMean(double val) override;
double hwhm() const { return m_hwhm; }
bool isDelta() const override;
std::string validate() const override;
private:
std::pair<double, double> plotRange() const override;
const double& m_mean;
const double& m_hwhm;
#endif // SWIG
};
#endif // BORNAGAIN_PARAM_DISTRIB_DISTRIBUTIONS_H
|