File: PyInterpreter.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (703 lines) | stat: -rw-r--r-- 24,892 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      PyCore/Embed/PyInterpreter.cpp
//! @brief     Implements functions to expose Python-interpreter functionality to C++.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

/* Embedded Python Interpreter

Note that Python objects are structures allocated on the heap,
accessed through pointers of type `PyObject*`.

References:
- Python C-API <https://docs.python.org/3/c-api>
- Python ABI stability <https://docs.python.org/3/c-api/stable.html>
- Numpy C-API <https://numpy.org/doc/stable/reference/c-api>;
  <https://numpy.org/doc/stable/reference/c-api/array.html>.
- Python Extension Patterns <https://pythonextensionpatterns.readthedocs.io>
- "Python behind the scenes" series <https://tenthousandmeters.com/tag/python-behind-the-scenes>
- Python's garbage collector <https://rushter.com/blog/python-garbage-collector>
*/

#include "PyCore/Embed/PyInterpreter.h"
#include "Base/Util/Assert.h"
#include "PyCore/Embed/PyCore.h"
#include <algorithm> // transform
#include <chrono>    // time_since_epoch
#include <csignal>   // SIGINT
#include <cstddef>   // NULL
#include <cstring>   // memcpy
#include <iostream>  // cerr
#include <memory>    // unique_ptr
#include <stdexcept> // runtime_error

// unique id used to name the temporary Python modules
static int uid = -1;

// separator line for error messages
static const std::string sep_line = std::string(30, '-');

namespace {

std::string wToString(const wchar_t* const s)
{
    if (!s)
        return "";
    std::wstring w(s);
    std::string result(w.length(), 0);
    std::transform(w.begin(), w.end(), result.begin(), [](wchar_t c) { return (char)c; });
    return result;
}

//! Converts PyObject into vector of strings, if possible, or throws exception
std::vector<std::string> toVectorString(PyObject* py_object)
{
    std::vector<std::string> result;

    if (PyTuple_Check(py_object)) {
        for (Py_ssize_t i = 0; i < PyTuple_Size(py_object); i++) {
            PyObject* value = PyTuple_GetItem(py_object, i); // borrowed reference
            result.push_back(PyInterpreter::pyStrtoString(value));
        }
    } else if (PyList_Check(py_object)) {
        for (Py_ssize_t i = 0; i < PyList_Size(py_object); i++) {
            PyObject* value = PyList_GetItem(py_object, i); // borrowed reference
            result.push_back(PyInterpreter::pyStrtoString(value));
        }
    } else {
        throw std::runtime_error(PyInterpreter::errorDescription(
            "PyInterpreter: Cannnot convert the given Python object "
            "to vector<string>."));
    }

    return result;
}

std::string getId()
{
    uid += 1;
    return std::to_string(uid);
}

} // namespace


// NOTE: "Python stable ABI" denotes the functions which use _only_ the Python's stable ABI;
// see <https://docs.python.org/3/c-api/stable.html>

// Python stable ABI
void PyInterpreter::initialize()
{
    if (!Py_IsInitialized())
        Py_Initialize();
}

// Python stable ABI
bool PyInterpreter::isInitialized()
{
    return static_cast<bool>(Py_IsInitialized());
}

// Python stable ABI
void PyInterpreter::finalize()
{
    // undo all initializations made by Py_Initialize() and subsequent use
    // of Python/C API functions, and destroy all sub-interpreters.
    // This is a no-op when called for a second time.
    Py_Finalize();
}

// Python stable ABI
bool PyInterpreter::checkError()
{
    if (PyErr_Occurred()) {
        // print a standard traceback to sys.stderr and clear the error indicator
        std::cerr << "---PyInterpreter: Error in Python interpreter:\n";
        PyErr_Print();
        std::cerr << "\n---\n";
        return true;
    }
    return false;
}

void PyInterpreter::terminateOnError(const std::string& message)
{
    const std::string msg{errorDescription(message)};
    std::cerr << "---PyInterpreter: Error:\n" << msg << std::endl;
    throw std::runtime_error(msg);
}

// Python stable ABI
void PyInterpreter::addPythonPath(const std::string& path)
{
    if (!path.empty()) {
        PyObject* sysPath = PySys_GetObject("path");                // borrowed reference
        PyList_Append(sysPath, PyUnicode_FromString(path.c_str())); // add to `PYTHONPATH`
    }
}

// Python stable ABI
void PyInterpreter::setPythonPath(const std::string& path)
{
    // returns 0 on success, -1 on error
    const int result = PySys_SetObject((char*)"path", PyUnicode_FromString(path.c_str()));
    if (result != 0)
        PyInterpreter::terminateOnError("PyInterpreter: Cannot set the Python path");
}

// Python stable ABI
PyObjectPtr PyInterpreter::import(const std::string& pymodule_name, const std::string& path)
{
    ASSERT(!pymodule_name.empty());

    addPythonPath(path);

    // import the module
    PyObject* pymodule = PyImport_ImportModule(pymodule_name.c_str());
    if (!pymodule || !PyModule_Check(pymodule))
        PyInterpreter::terminateOnError("PyInterpreter: Cannot load Python module '" + pymodule_name
                                        + "' (given path = '" + path + "')");

    // returns a _new_ reference; ie. caller is responsible for the ref-count
    return pymodule;
}

// Python stable ABI
void PyInterpreter::DecRef(PyObject* py_object)
{
    // Decrementing Python reference-count without
    // Python initialized leads to memory access violation (segmentation fault)
    ASSERT(PyInterpreter::isInitialized());

    Py_XDECREF(py_object);
}

std::string PyInterpreter::pyStrtoString(PyObject* py_object)
{
    std::string result;
    PyObject* pyStr = PyUnicode_AsEncodedString(py_object, "utf-8", "replace");
    if (pyStr) {
        result = std::string(PyBytes_AsString(pyStr));
        Py_DecRef(pyStr);
    }

    return result;
}

std::string PyInterpreter::getStrAttribute(PyObject* py_module, const std::string& attr_name)
{
    std::string result_str;
    PyObject* pAttr = PyObject_GetAttrString(py_module, attr_name.c_str());

    if (!pAttr) {
        Py_DecRef(pAttr);
        PyInterpreter::terminateOnError("PyInterpreter: Cannot get Python attribute '" + attr_name
                                        + "'");
    }

    result_str = PyInterpreter::pyStrtoString(pAttr);
    Py_DecRef(pAttr);
    return result_str;
}

void PyInterpreter::callFunction(PyObject* py_module, const std::string& fn_name)
{

    // NOTE: The Python function signature is assumed to be `fn() -> str`
    std::string result_str;
    PyObject *pFunc, *pRetValue;

    pFunc = PyObject_GetAttrString(py_module, fn_name.c_str());

    if (!pFunc || !PyCallable_Check(pFunc)) {
        Py_DecRef(pFunc);
        PyInterpreter::terminateOnError("PyInterpreter: Cannot call Python function '" + fn_name
                                        + "'");
    }

    // Call the function with no arguments
    pRetValue = PyObject_CallObject(pFunc, NULL);
    result_str = PyInterpreter::pyStrtoString(pRetValue);
    Py_DecRef(pRetValue);
    Py_DecRef(pFunc);
}

std::string PyInterpreter::runtimeInfo()
{
    std::string result;

    // Embedded Python details
    {
        PyConfig config;
        PyConfig_InitPythonConfig(&config);
        auto status = PyConfig_Read(&config);
        if (PyStatus_Exception(status))
            throw std::runtime_error("Cannot access PyConfig");
        result += "  - program name: " + wToString(config.program_name) + "\n";
        PyConfig_Clear(&config);
    }
    {
        PyObject* obj = PySys_GetObject("executable");
        PyObject* repr = PyObject_Str(obj);
        const std::string s = PyUnicode_AsUTF8AndSize(repr, NULL);
        result += "  - executable: " + s + "\n";
    }
    {
        PyObject* obj = PySys_GetObject("path");
        PyObject* repr = PyObject_Str(obj);
        const std::string s = PyUnicode_AsUTF8AndSize(repr, NULL);
        result += "  - Python PATH: " + s + "\n";
    }
    {
        // TODO WAIT
        // This can be replaced by PyConfig_Get("home"),
        // once the Python C API is at version >= 3.14
        // See https://github.com/python/cpython/issues/129342#issuecomment-2615759261.
        PyConfig config;
        PyConfig_InitPythonConfig(&config);
        auto status = PyConfig_Read(&config);
        if (PyStatus_Exception(status))
            throw std::runtime_error("Cannot access PyConfig");
        result += "  - Python home: " + wToString(config.home) + "\n";
        PyConfig_Clear(&config);
    }

    // Runtime Python's sys.path
    PyObject* sysPath = PySys_GetObject((char*)"path"); // borrowed reference
    std::vector<std::string> content{toVectorString(sysPath)};
    result += "  - sys.path: ";
    for (const std::string& s : content)
        result += s + ",";

    return result;
}

// Attempt to retrieve Python stack trace
// Ref: <https://stackoverflow.com/a/15907460>
std::string PyInterpreter::stackTrace()
{
    std::string result;

    if (!PyErr_Occurred())
        return "";

    PyObject *ptype, *pvalue, *ptraceback, *pstr;

    // fetch error indicators
    PyErr_Fetch(&ptype, &pvalue, &ptraceback);

    if (!ptype) {
        Py_XDECREF(pvalue);
        Py_XDECREF(ptraceback);
        return "";
    }

    if (pvalue) {
        pstr = PyObject_Str(pvalue);
        if (const char* str = PyUnicode_AsUTF8(pstr)) {
            result += std::string(str) + "\n";
        }

        Py_XDECREF(pstr);
    }

    if (ptraceback) {
        // import traceback module and add Python traceback
        PyObject* py_traceback_module = PyImport_ImportModule("traceback");

        if (py_traceback_module) {
            // format the stack trace and the exception information
            PyObject* py_format_exc =
                PyObject_GetAttrString(py_traceback_module, "format_exception");
            if (py_format_exc && PyCallable_Check(py_format_exc)) {
                PyObject* ptraceback_list =
                    PyObject_CallFunctionObjArgs(py_format_exc, ptype, pvalue, ptraceback, NULL);
                if (ptraceback_list) {
                    // join the traceback lines
                    for (Py_ssize_t i = 0; i < PyList_Size(ptraceback_list); ++i) {
                        PyObject* line = PyList_GetItem(ptraceback_list, i); // borrowed reference
                        result += "\n" + std::string(PyUnicode_AsUTF8(line));
                    }
                    Py_DecRef(ptraceback_list);
                }
            }

            Py_XDECREF(py_format_exc);
        }

        Py_XDECREF(py_traceback_module);
    }

    result += "\n";
    result += PyInterpreter::runtimeInfo();

    return result;
}

std::string PyInterpreter::errorDescription(const std::string& title)
{
    std::string msg =
        title + "\n" + sep_line + "\n" + "* Python exception:\n" + PyInterpreter::stackTrace();
    return msg;
}


PyObjectPtr PyInterpreter::BornAgain::import(const std::string& path)
{
    PyInterpreter::addPythonPath(path);

#ifndef _WIN32
    // store ctrl-C handler before Numpy messes it up
    PyOS_sighandler_t sighandler = PyOS_getsig(SIGINT);
#endif

    PyObject* ba_pymodule = PyImport_ImportModule("bornagain");

#ifndef _WIN32
    PyOS_setsig(SIGINT, sighandler); // restore previous ctrl-C handler
#endif

    if (!ba_pymodule || !PyModule_Check(ba_pymodule))
        PyInterpreter::terminateOnError(
            "PyInterpreter:BornAgain: Cannot load 'bornagain' Python module "
            "(given path = '"
            + path + "')");

    return ba_pymodule;
}

PyObjectPtr PyInterpreter::BornAgain::importScript(const std::string& script,
                                                   const std::string& path)
{
    // import bornagain Python module
    PyObjectPtr pBAModule{PyInterpreter::BornAgain::import(path)};

    // introduce a new module to execute the Python script
    const std::string tmp_module_name = "_ba_tmp_module_" + getId() + "_";
    PyObject* pModule = PyImport_AddModule(tmp_module_name.c_str()); // borrowed reference
    if (pModule == NULL)
        PyInterpreter::terminateOnError(
            "PyInterpreter:BornAgain: Cannot add a temporary Python module");

    PyObject* pGlobalDict = PyModule_GetDict(pModule); // borrowed reference
    PyDict_SetItemString(pGlobalDict, "bornagain", pBAModule.get());

    // execute the function in the module namespace
    PyObject* pExeResult = PyRun_String(script.c_str(), Py_file_input, pGlobalDict, pGlobalDict);

    if (pExeResult == NULL)
        PyInterpreter::terminateOnError("PyInterpreter:BornAgain: Failed to run the script");

    Py_DecRef(pExeResult);

    return PyObjectPtr{pModule, /* borrowed = */ true};
}


PyObjectPtr PyInterpreter::BornAgain::callScriptFunction(const std::string& functionName,
                                                         const std::string& script,
                                                         const std::string& path)
{
    PyObjectPtr tmpModule{PyInterpreter::BornAgain::importScript(script, path)};

    // locate the function (it is an attribute of the module)
    PyObject* pFunc = PyObject_GetAttrString(tmpModule.get(), functionName.c_str());
    if (!pFunc)
        PyInterpreter::terminateOnError("PyInterpreter:BornAgain: "
                                        "Cannot locate the compiled function\n'''\n"
                                        + functionName + "\n'''");

    // call the function with signature f() -> PythonObject
    PyObject* pResult = PyObject_CallFunctionObjArgs(pFunc, NULL);
    Py_DecRef(pFunc);

    if (!pResult)
        PyInterpreter::terminateOnError("PyInterpreter:BornAgain: "
                                        "Failed executing Python function '"
                                        + functionName + "'");

    return pResult;
}

std::vector<std::string> PyInterpreter::BornAgain::listOfFunctions(const std::string& script,
                                                                   const std::string& path)
{
    PyObjectPtr tmpModule{PyInterpreter::BornAgain::importScript(script, path)};

    if (!tmpModule.valid())
        PyInterpreter::terminateOnError("PyInterpreter:BornAgain: "
                                        "Cannot obtain the dictionary from the script module");

    PyObject* pDict = PyModule_GetDict(tmpModule.get()); // borrowed reference
    if (!pDict)
        PyInterpreter::terminateOnError("PyInterpreter:BornAgain: "
                                        "Cannot obtain the dictionary from the script module");

    PyObject *key, *value;
    Py_ssize_t pos = 0;
    std::vector<std::string> fn_names;
    while (PyDict_Next(pDict, &pos, &key, &value)) {
        if (PyCallable_Check(value)) {
            std::string func_name{PyInterpreter::pyStrtoString(key)};
            // do not import callables whose names begin with '__'
            if (func_name.find("__") == std::string::npos)
                fn_names.push_back(func_name);
        }
    }

    return fn_names;
}

//----------------------------------------

//! Fabio-related auxiliary functions
namespace {

//! Parses a given Python dictionary to construct C++ map from the items
ArrayMetadata parsePythonDict(PyObject* const pyDict)
{
    ArrayMetadata result_map;

    if (!PyDict_Check(pyDict))
        PyInterpreter::terminateOnError("PyInterpreter:Fabio: Input is not a Python dictionary");

    PyObject* key;
    PyObject* value;
    Py_ssize_t pos = 0;

    while (PyDict_Next(pyDict, &pos, &key, &value)) {
        const std::string keyStr = PyUnicode_AsUTF8(key);

        if (PyLong_Check(value))
            result_map[keyStr] = PyLong_AsLong(value);
        else if (PyFloat_Check(value))
            result_map[keyStr] = PyFloat_AsDouble(value);
        else if (PyUnicode_Check(value))
            result_map[keyStr] = PyUnicode_AsUTF8(value);
        else if (value == Py_None)
            result_map[keyStr] = std::string("<None>");
        else {
            // attempt to extract a string-representation of the object
            PyObject* value_str = PyObject_Str(value);
            if (PyUnicode_Check(value_str))
                result_map[keyStr] = PyUnicode_AsUTF8(value_str);

            Py_XDECREF(value_str);
        }
    }

    return result_map;
}

//! Makes a descriptor for a given Numpy array (needs ctypes and numpy Python packages)
PyObject* makeArrayDescriptor(PyObject* const numpyArray)
{
    // introduce a new module to execute the Python converter script
    const std::string _module_name = "_ba_converter_" + getId() + "_";
    PyObject* pModule = PyImport_AddModule(_module_name.c_str()); // borrowed reference
    PyObject* pGlobalDict = PyModule_GetDict(pModule);            // borrowed reference

    // create the converter function in Python
    // (numpy-array) -> (void-pointer, size, nr-of-dimensions, dimensions, dtype)
    const char pArrayConverterScript[] =
        "def ArrayConverter(np_array):\n"
        "    import numpy as np, ctypes;"
        "    arr_ctype = np.ctypeslib.as_ctypes_type(np_array.dtype);"
        "    array_ptr_t = ctypes.POINTER(arr_ctype);"
        "    # get the pointer to the raw array data\n"
        "    arr_ptr = np_array.ctypes.data_as(array_ptr_t);"
        "    arr_void_ptr = ctypes.cast(arr_ptr, ctypes.c_void_p);"
        "    # get the size and the dimensions of the array\n"
        "    arr_size = np_array.size;"
        "    arr_dims = tuple(np_array.shape);"
        "    arr_ndims = len(arr_dims);"
        "    arr_dtype = np_array.dtype.name;"
        "    return (arr_void_ptr.value, arr_size, arr_ndims, arr_dims, arr_dtype)";

    // execute the function in the module namespace
    PyObject* pExeResult =
        PyRun_String(pArrayConverterScript, Py_file_input, pGlobalDict, pGlobalDict);

    if (!pExeResult)
        PyInterpreter::terminateOnError("PyInterpreter:Fabio: "
                                        "Failed to run the Python array-converter script");

    Py_DECREF(pExeResult);

    // get the function object
    PyObject* pConverterFunc =
        PyDict_GetItemString(pGlobalDict, "ArrayConverter"); // borrowed reference

    // call the converter function with the Numpy array as argument
    PyObject* pResult = PyObject_CallFunctionObjArgs(pConverterFunc, numpyArray, NULL);

    if (!pResult)
        PyInterpreter::terminateOnError(
            "PyInterpreter:Fabio: Python array-converter script did not yield a proper result");

    // Python result: tuple(void-ptr, size, ndims, dims, dtype)
    return pResult;
}

//! Retrieves the array description from a given Python data-structure
void parseArrayDescriptor(PyObject* const pyArrayDescriptorTuple, std::size_t& arr_size,
                          std::size_t& arr_ndims, std::size_t*& arr_dims, std::string& arr_dtype,
                          void*& array_ptr)
{
    // reset the output variables
    arr_size = 0;
    arr_ndims = 0;
    arr_dims = nullptr;
    array_ptr = nullptr;

    if (!pyArrayDescriptorTuple)
        return;

    // parse the given tuple `pyArrayWrapper`:
    //   (void-pointer, size, nr-of-dimensions, dimensions, dtype)
    PyObject* py_void_ptr;
    PyObject* py_arr_size;
    PyObject* py_ndims;
    PyObject* py_arr_dims;
    PyObject* py_arr_dtype;

    if (!PyArg_ParseTuple(pyArrayDescriptorTuple, "OOOOO", // borrowed reference
                          &py_void_ptr, &py_arr_size, &py_ndims, &py_arr_dims, &py_arr_dtype))
        PyInterpreter::terminateOnError(
            "PyInterpreter:Fabio: "
            "Failed to parse returned values from Python array-converter");

    if (!(py_void_ptr && py_arr_size && py_ndims && py_arr_dims && py_arr_dtype))
        PyInterpreter::terminateOnError("PyInterpreter:Fabio: "
                                        "Invalid returned values from Python array-converter");

    // array void-pointer and metadata
    array_ptr = PyLong_AsVoidPtr(py_void_ptr);
    arr_size = static_cast<std::size_t>(PyLong_AsLong(py_arr_size));
    arr_ndims = static_cast<std::size_t>(PyLong_AsLong(py_ndims));
    // convert 'dtype' (Python string) to std::string
    PyObject* _dtype = PyUnicode_AsEncodedString(py_arr_dtype, "UTF-8", "strict");
    arr_dtype = std::string(PyBytes_AsString(_dtype));
    Py_DECREF(_dtype);

    // verify array properties
    if (!(array_ptr && arr_size > 0 && arr_ndims > 0 && !arr_dtype.empty()))
        return;

    // store each dimension of the array
    arr_dims = new std::size_t[arr_ndims];
    for (std::size_t i_d = 0; i_d < arr_ndims; ++i_d)
        arr_dims[i_d] = static_cast<std::size_t>(PyLong_AsLong(PyTuple_GetItem(py_arr_dims, i_d)));
}


//! Use Python fabio to read data and to obtain a Numpy array and the Fabio header
ArrayMetadata _fabio_load(const std::string& filename, PyObject*& numpyArray)
{
    // import fabio
    PyObject* pFabioModule = PyImport_ImportModule("fabio");
    if (pFabioModule == NULL)
        PyInterpreter::terminateOnError("PyInterpreter:Fabio: Failed to import fabio");

    // introduce a new module to execute the Python converter script
    const std::string _module_name = "_ba_fabio_" + getId() + "_";
    PyObject* pModule = PyImport_AddModule(_module_name.c_str()); // borrowed reference
    PyObject* pGlobalDict = PyModule_GetDict(pModule);            // borrowed reference
    // add fabio to the global-dict of the module
    PyDict_SetItemString(pGlobalDict, "fabio", pFabioModule);

    // create the converter function in Python
    // (data-filename:str) -> numpy-array
    const char pFabioDataImportScript[] = "def import_data(data_filename):\n"
                                          "    im_data = fabio.open(data_filename);"
                                          "    return (im_data.data, im_data.header);";

    // execute the function in the module namespace
    PyObject* pExeResult =
        PyRun_String(pFabioDataImportScript, Py_file_input, pGlobalDict, pGlobalDict);

    if (pExeResult == NULL)
        PyInterpreter::terminateOnError("PyInterpreter:Fabio: "
                                        "Failed to run the Python import_data script");

    Py_DECREF(pExeResult);

    // get the function object
    PyObject* pDataLoadFunc =
        PyDict_GetItemString(pGlobalDict, "import_data"); // borrowed reference
    // convert the filename to Python str
    PyObject* pFilename = PyUnicode_FromString(filename.c_str());
    // call the converter function with the filename as argument;
    // the result must be a Numpy array and a data header
    PyObject* pResult = PyObject_CallFunctionObjArgs(pDataLoadFunc, pFilename, NULL);
    Py_DECREF(pFilename);
    Py_DECREF(pFabioModule);

    PyObject* pFabioHeader;
    if (!pResult || !PyTuple_Check(pResult)) {
        Py_XDECREF(pResult);
        PyInterpreter::terminateOnError("PyInterpreter:Fabio: "
                                        "Python import_data script did not return a proper result");
    }

    if (!PyArg_ParseTuple(pResult, "OO", // borrowed reference
                          &numpyArray, &pFabioHeader)) {
        Py_XDECREF(pResult);
        PyInterpreter::terminateOnError("PyInterpreter:Fabio: "
                                        "Failed to parse returned values from Python import_data");
    }

    if (!(numpyArray && pFabioHeader)) {
        Py_DECREF(pResult);
        Py_XDECREF(numpyArray);
        Py_XDECREF(pFabioHeader);
        PyInterpreter::terminateOnError("PyInterpreter:Fabio: "
                                        "Invalid returned values from Python import_data");
    }

    // increase the reference count to keep the Numpy object alive in the Python interpreter
    Py_IncRef(numpyArray);

    ArrayMetadata fabioHeader{parsePythonDict(pFabioHeader)};
    Py_DECREF(pFabioHeader);

    return fabioHeader;
}

} // namespace


PyObjectPtr PyInterpreter::Fabio::import()
{
    return PyInterpreter::import("fabio");
}

NumpyArrayWrapper PyInterpreter::Fabio::load(const std::string& filename)
{
    PyObject* numpyArray = nullptr;
    ArrayMetadata header = _fabio_load(filename, numpyArray);

    // obtain a descriptor (Python object) for the array
    PyObject* pArrDesc = makeArrayDescriptor(numpyArray);

    // parse the Python array descriptor
    std::size_t arr_size, arr_ndims;
    std::size_t* arr_dims;
    std::string arr_dtype;
    void* array_ptr;

    parseArrayDescriptor(pArrDesc, arr_size, arr_ndims, arr_dims, arr_dtype, array_ptr);

    Py_DECREF(pArrDesc);

    return NumpyArrayWrapper(arr_size, arr_ndims, arr_dims, arr_dtype, array_ptr, numpyArray,
                             header);
}