1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Resample/Flux/MatrixFlux.cpp
//! @brief Implements class MatrixFlux.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2020
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Resample/Flux/MatrixFlux.h"
#include "Base/Util/Assert.h"
namespace {
const auto eps = std::numeric_limits<double>::epsilon() * 10.;
complex_t GetImExponential(complex_t exponent)
{
if (exponent.imag() > -std::log(std::numeric_limits<double>::min()))
return 0.0;
return std::exp(I * exponent);
}
} // namespace
MatrixFlux::MatrixFlux(double kz_sign, const Spinor& k_eigen, const R3& b, double magnetic_SLD)
: m_k_eigen(k_eigen)
, m_T(+1, 0, 0, +1)
, m_R(-1, 0, 0, -1)
, m_b(b)
, m_kz_sign(kz_sign)
, m_magnetic_SLD(magnetic_SLD)
{
ASSERT(std::abs(m_b.mag() - 1) < eps || (m_b.mag() < eps && magnetic_SLD < eps));
}
//! See PhysRef, chapter "Polarized", section "Wavenumber operator".
SpinMatrix MatrixFlux::computeKappa() const
{
const complex_t alpha = m_k_eigen.u + m_k_eigen.v;
const complex_t beta = m_k_eigen.u - m_k_eigen.v;
return SpinMatrix(alpha + beta * m_b.z(), beta * (m_b.x() - I * m_b.y()),
beta * (m_b.x() + I * m_b.y()), alpha - beta * m_b.z())
/ 2.;
}
//! See PhysRef, chapter "Polarized", section "Wavenumber operator".
SpinMatrix MatrixFlux::computeInverseKappa() const
{
const complex_t alpha = m_k_eigen.u + m_k_eigen.v;
const complex_t beta = m_k_eigen.u - m_k_eigen.v;
if (std::abs(alpha * alpha - beta * beta) == 0.)
throw std::runtime_error("Inverse wavenumber operator is singular for given B field."
" Add some absorption to the nuclear SLD.");
return 2. / (alpha * alpha - beta * beta)
* SpinMatrix(alpha - beta * m_b.z(), beta * (-m_b.x() + I * m_b.y()),
-beta * (m_b.x() + I * m_b.y()), alpha + beta * m_b.z());
}
//! See PhysRef, chapter "Polarized", section "Eigendecomposition"
SpinMatrix MatrixFlux::eigenToMatrix(const Spinor& diagonal) const
{
const SpinMatrix M(diagonal.u, 0, 0, diagonal.v);
if (std::abs(m_b.mag() - 1.) < eps) {
SpinMatrix Q(1. + m_b.z(), m_b.x() - I * m_b.y(), m_b.x() + I * m_b.y(), -m_b.z() - 1.);
return Q * M * Q.adjoint() / (2. * (1. + m_b.z()));
}
ASSERT(m_b.mag() < eps); // remaining case: no field
return M;
}
SpinMatrix MatrixFlux::computeDeltaMatrix(double thickness) const
{
return eigenToMatrix({GetImExponential(m_kz_sign * thickness * m_k_eigen.u),
GetImExponential(m_kz_sign * thickness * m_k_eigen.v)});
}
SpinMatrix MatrixFlux::T1Matrix() const
{
return eigenToMatrix({1., 0.});
}
SpinMatrix MatrixFlux::T2Matrix() const
{
return eigenToMatrix({0., 1.});
}
Spinor MatrixFlux::T1plus() const
{
return T1Matrix() * m_T.col0();
}
Spinor MatrixFlux::R1plus() const
{
return T1Matrix() * m_R.col0();
}
Spinor MatrixFlux::T2plus() const
{
return T2Matrix() * m_T.col0();
}
Spinor MatrixFlux::R2plus() const
{
return T2Matrix() * m_R.col0();
}
Spinor MatrixFlux::T1min() const
{
return T1Matrix() * m_T.col1();
}
Spinor MatrixFlux::R1min() const
{
return T1Matrix() * m_R.col1();
}
Spinor MatrixFlux::T2min() const
{
return T2Matrix() * m_T.col1();
}
Spinor MatrixFlux::R2min() const
{
return T2Matrix() * m_R.col1();
}
Spinor MatrixFlux::getKz() const
{
return m_kz_sign * m_k_eigen;
}
|