1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Resample/Option/SimulationOptions.cpp
//! @brief Implements class SimulationOptions.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Resample/Option/SimulationOptions.h"
#include "Base/Util/Assert.h"
#include <cstdlib>
#include <iostream>
#include <string>
#include <thread>
SimulationOptions::SimulationOptions()
: m_mc_integration(false)
, m_include_specular(false)
, m_use_avg_materials(false)
, m_mc_points(1)
{
if (const char* env_p = std::getenv("BA_NTHREADS")) {
m_n_threads = std::stoi(env_p);
if (m_n_threads > 0)
return;
}
m_n_threads = getHardwareConcurrency();
}
bool SimulationOptions::isIntegrate() const
{
return m_mc_integration && m_mc_points > 1;
}
void SimulationOptions::setMonteCarloIntegration(bool flag, size_t mc_points)
{
m_mc_integration = flag;
m_mc_points = mc_points;
}
void SimulationOptions::setNumberOfThreads(int nthreads)
{
ASSERT(nthreads >= 0);
if (nthreads == 0)
m_n_threads = getHardwareConcurrency();
else
m_n_threads = nthreads;
ASSERT(m_n_threads > 0);
}
unsigned SimulationOptions::getNumberOfThreads() const
{
ASSERT(m_n_threads > 0);
return m_n_threads;
}
void SimulationOptions::setNumberOfBatches(int nbatches)
{
ASSERT(nbatches > 0);
m_n_batches = nbatches;
}
void SimulationOptions::setMesoOptions(bool use_rec_sum, double rad_factor)
{
m_meso_options.use_reciprocal_sum = use_rec_sum;
m_meso_options.radius_factor = rad_factor;
}
unsigned SimulationOptions::getNumberOfBatches() const
{
ASSERT(m_n_batches > 0);
return m_n_batches;
}
unsigned SimulationOptions::getCurrentBatch() const
{
unsigned result = m_current_batch;
ASSERT(result < m_n_batches);
return result;
}
unsigned SimulationOptions::getHardwareConcurrency() const
{
return std::thread::hardware_concurrency();
}
|