1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Resample/Particle/IReParticle.cpp
//! @brief Implements class interface IReParticle.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Resample/Particle/IReParticle.h"
#include "Base/Util/Assert.h"
#include "Resample/Element/DiffuseElement.h"
#include "Resample/Flux/MatrixFlux.h"
#include "Resample/Flux/ScalarFlux.h"
#include "Sample/Material/Admixtures.h"
IReParticle::IReParticle() = default;
IReParticle::IReParticle(const std::optional<size_t>& i_layer)
: m_i_layer(i_layer)
{
}
IReParticle::~IReParticle() = default;
OneAdmixture IReParticle::admixed() const
{
return {m_admixed_fraction, *m_admixed_material};
}
void IReParticle::setAdmixedFraction(double fraction)
{
m_admixed_fraction = fraction;
}
void IReParticle::setAdmixedMaterial(const Material& material)
{
m_admixed_material = std::make_unique<Material>(material);
}
bool IReParticle::consideredEqualTo(const IReParticle& ire) const
{
bool same_admixed_material =
m_admixed_material ? (*m_admixed_material == ire.admixed().material) : true;
return m_i_layer == ire.i_layer() && m_admixed_fraction == ire.admixedFraction()
&& same_admixed_material;
}
R3 IReParticle::posDiff(const R3* a, const R3* b)
{
R3 pos_a = a ? *a : R3();
R3 pos_b = b ? *b : R3();
return pos_a - pos_b;
}
complex_t IReParticle::phaseFactor(const WavevectorInfo& wavevectors, const R3* position)
{
if (!position)
return 1;
return exp_I(position->dot(wavevectors.getQ()));
}
complex_t IReParticle::coherentFF(const std::vector<ScalarTerm>& components, const R3& shift) const
{
complex_t result;
for (const auto& term : components)
result += term.dwba_term * phaseFactor(term.wavevectors, &shift);
return result;
}
std::vector<ScalarTerm> IReParticle::calcCoherentComponents(const DiffuseElement& ele) const
{
const WavevectorInfo& wavevectors = ele.wavevectorInfo();
if (!i_layer().has_value()) {
// no slicing, pure Born approximation
return {{wavevectors, theFF(wavevectors)}};
}
ASSERT(i_layer().has_value());
const size_t iLayer = i_layer().value();
const auto* inFlux = dynamic_cast<const ScalarFlux*>(ele.fluxIn(iLayer));
const auto* outFlux = dynamic_cast<const ScalarFlux*>(ele.fluxOut(iLayer));
// Retrieve the two different incoming wavevectors in the layer
const C3& ki = wavevectors.getKi();
const complex_t kiz = inFlux->getScalarKz();
const C3 k_i_T{ki.x(), ki.y(), -kiz};
const C3 k_i_R{ki.x(), ki.y(), +kiz};
// Retrieve the two different outgoing wavevector bins in the layer
const C3& kf = wavevectors.getKf();
const complex_t kfz = outFlux->getScalarKz();
const C3 k_f_T{kf.x(), kf.y(), +kfz};
const C3 k_f_R{kf.x(), kf.y(), -kfz};
// Construct the four different scattering contributions wavevector infos
const double wavelength = wavevectors.vacuumLambda();
const WavevectorInfo q_TT(k_i_T, k_f_T, wavelength);
const WavevectorInfo q_RT(k_i_R, k_f_T, wavelength);
const WavevectorInfo q_TR(k_i_T, k_f_R, wavelength);
const WavevectorInfo q_RR(k_i_R, k_f_R, wavelength);
// Get the four R,T coefficients
const complex_t T_in = inFlux->getScalarT();
const complex_t R_in = inFlux->getScalarR();
const complex_t T_out = outFlux->getScalarT();
const complex_t R_out = outFlux->getScalarR();
// The four different scattering contributions;
// S stands for scattering off the particle,
// R for reflection off the layer interface.
// Note that the order of multiplication matters:
// If a prefactor is 0, then theFF() won't be called.
const complex_t term_S = T_in * T_out * theFF(q_TT);
const complex_t term_RS = R_in * T_out * theFF(q_RT);
const complex_t term_SR = T_in * R_out * theFF(q_TR);
const complex_t term_RSR = R_in * R_out * theFF(q_RR);
return {
{q_TT, term_S},
{q_RT, term_RS},
{q_TR, term_SR},
{q_RR, term_RSR},
};
}
SpinMatrix IReParticle::coherentPolFF(const std::vector<PolarizedTerm>& components,
const R3& shift) const
{
SpinMatrix result;
for (const auto& term : components)
result += term.dwba_term * phaseFactor(term.wavevectors, &shift);
return result;
}
std::vector<PolarizedTerm> IReParticle::calcCoherentPolComponents(const DiffuseElement& ele) const
{
const WavevectorInfo& wavevectors = ele.wavevectorInfo();
if (!i_layer().has_value()) {
// no slicing, pure Born approximation
SpinMatrix o = thePolFF(wavevectors);
return {{wavevectors, {-o.c, +o.a, -o.d, +o.b}}};
}
const size_t iLayer = i_layer().value();
const auto* inFlux = dynamic_cast<const MatrixFlux*>(ele.fluxIn(iLayer));
const auto* outFlux = dynamic_cast<const MatrixFlux*>(ele.fluxOut(iLayer));
// the required wavevectors inside the layer for
// different eigenmodes and in- and outgoing wavevector;
const complex_t kix = wavevectors.getKi().x();
const complex_t kiy = wavevectors.getKi().y();
const Spinor& kiz = inFlux->getKz();
const C3 ki_1R{kix, kiy, +kiz.u};
const C3 ki_1T{kix, kiy, -kiz.u};
const C3 ki_2R{kix, kiy, +kiz.v};
const C3 ki_2T{kix, kiy, -kiz.v};
const complex_t kfx = wavevectors.getKf().x();
const complex_t kfy = wavevectors.getKf().y();
const Spinor& kfz = outFlux->getKz();
const C3 kf_1R{kfx, kfy, -kfz.u};
const C3 kf_1T{kfx, kfy, +kfz.u};
const C3 kf_2R{kfx, kfy, -kfz.v};
const C3 kf_2T{kfx, kfy, +kfz.v};
// now each of the 16 matrix terms of the polarized DWBA is calculated:
// NOTE: when the underlying reflection/transmission coefficients are
// scalar, the eigenmodes have identical eigenvalues and spin polarization
// is used as a basis; in this case however the matrices get mixed:
// real m_M11 = calculated m_M12
// real m_M12 = calculated m_M11
// real m_M21 = calculated m_M22
// real m_M22 = calculated m_M21
// since both eigenvalues are identical, this does not influence the result.
SpinMatrix ff_BA; // will be overwritten
double wavelength = wavevectors.vacuumLambda();
// The following matrices each contain the four polarization conditions
// (p->p, p->m, m->p, m->m)
// The first two indices indicate a scattering from the 1/2 eigenstate into
// the 1/2 eigenstate, while the capital indices indicate a reflection
// before and/or after the scattering event (first index is in-state,
// second is out-state; this also applies to the internal matrix indices)
// eigenmode 1 -> eigenmode 1: direct scattering
const WavevectorInfo q11_TT(ki_1T, kf_1T, wavelength);
ff_BA = thePolFF(q11_TT);
SpinMatrix M11_S(-DotProduct(outFlux->T1min(), ff_BA * inFlux->T1plus()),
+DotProduct(outFlux->T1plus(), ff_BA * inFlux->T1plus()),
-DotProduct(outFlux->T1min(), ff_BA * inFlux->T1min()),
+DotProduct(outFlux->T1plus(), ff_BA * inFlux->T1min()));
// eigenmode 1 -> eigenmode 1: reflection and then scattering
const WavevectorInfo q11_RT(ki_1R, kf_1T, wavelength);
ff_BA = thePolFF(q11_RT);
SpinMatrix M11_RS(-DotProduct(outFlux->T1min(), ff_BA * inFlux->R1plus()),
+DotProduct(outFlux->T1plus(), ff_BA * inFlux->R1plus()),
-DotProduct(outFlux->T1min(), ff_BA * inFlux->R1min()),
+DotProduct(outFlux->T1plus(), ff_BA * inFlux->R1min()));
// eigenmode 1 -> eigenmode 1: scattering and then reflection
const WavevectorInfo q11_TR(ki_1T, kf_1R, wavelength);
ff_BA = thePolFF(q11_TR);
SpinMatrix M11_SR(-DotProduct(outFlux->R1min(), ff_BA * inFlux->T1plus()),
+DotProduct(outFlux->R1plus(), ff_BA * inFlux->T1plus()),
-DotProduct(outFlux->R1min(), ff_BA * inFlux->T1min()),
+DotProduct(outFlux->R1plus(), ff_BA * inFlux->T1min()));
// eigenmode 1 -> eigenmode 1: reflection, scattering and again reflection
const WavevectorInfo q11_RR(ki_1R, kf_1R, wavelength);
ff_BA = thePolFF(q11_RR);
SpinMatrix M11_RSR(-DotProduct(outFlux->R1min(), ff_BA * inFlux->R1plus()),
+DotProduct(outFlux->R1plus(), ff_BA * inFlux->R1plus()),
-DotProduct(outFlux->R1min(), ff_BA * inFlux->R1min()),
+DotProduct(outFlux->R1plus(), ff_BA * inFlux->R1min()));
// eigenmode 1 -> eigenmode 2: direct scattering
const WavevectorInfo q12_TT(ki_1T, kf_2T, wavelength);
ff_BA = thePolFF(q12_TT);
SpinMatrix M12_S(-DotProduct(outFlux->T2min(), ff_BA * inFlux->T1plus()),
+DotProduct(outFlux->T2plus(), ff_BA * inFlux->T1plus()),
-DotProduct(outFlux->T2min(), ff_BA * inFlux->T1min()),
+DotProduct(outFlux->T2plus(), ff_BA * inFlux->T1min()));
// eigenmode 1 -> eigenmode 2: reflection and then scattering
const WavevectorInfo q12_RT(ki_1R, kf_2T, wavelength);
ff_BA = thePolFF(q12_RT);
SpinMatrix M12_RS(-DotProduct(outFlux->T2min(), ff_BA * inFlux->R1plus()),
+DotProduct(outFlux->T2plus(), ff_BA * inFlux->R1plus()),
-DotProduct(outFlux->T2min(), ff_BA * inFlux->R1min()),
+DotProduct(outFlux->T2plus(), ff_BA * inFlux->R1min()));
// eigenmode 1 -> eigenmode 2: scattering and then reflection
const WavevectorInfo q12_TR(ki_1T, kf_2R, wavelength);
ff_BA = thePolFF(q12_TR);
SpinMatrix M12_SR(-DotProduct(outFlux->R2min(), ff_BA * inFlux->T1plus()),
+DotProduct(outFlux->R2plus(), ff_BA * inFlux->T1plus()),
-DotProduct(outFlux->R2min(), ff_BA * inFlux->T1min()),
+DotProduct(outFlux->R2plus(), ff_BA * inFlux->T1min()));
// eigenmode 1 -> eigenmode 2: reflection, scattering and again reflection
const WavevectorInfo q12_RR(ki_1R, kf_2R, wavelength);
ff_BA = thePolFF(q12_RR);
SpinMatrix M12_RSR(-DotProduct(outFlux->R2min(), ff_BA * inFlux->R1plus()),
+DotProduct(outFlux->R2plus(), ff_BA * inFlux->R1plus()),
-DotProduct(outFlux->R2min(), ff_BA * inFlux->R1min()),
+DotProduct(outFlux->R2plus(), ff_BA * inFlux->R1min()));
// eigenmode 2 -> eigenmode 1: direct scattering
const WavevectorInfo q21_TT(ki_2T, kf_1T, wavelength);
ff_BA = thePolFF(q21_TT);
SpinMatrix M21_S(-DotProduct(outFlux->T1min(), ff_BA * inFlux->T2plus()),
+DotProduct(outFlux->T1plus(), ff_BA * inFlux->T2plus()),
-DotProduct(outFlux->T1min(), ff_BA * inFlux->T2min()),
+DotProduct(outFlux->T1plus(), ff_BA * inFlux->T2min()));
// eigenmode 2 -> eigenmode 1: reflection and then scattering
const WavevectorInfo q21_RT(ki_2R, kf_1T, wavelength);
ff_BA = thePolFF(q21_RT);
SpinMatrix M21_RS(-DotProduct(outFlux->T1min(), ff_BA * inFlux->R2plus()),
+DotProduct(outFlux->T1plus(), ff_BA * inFlux->R2plus()),
-DotProduct(outFlux->T1min(), ff_BA * inFlux->R2min()),
+DotProduct(outFlux->T1plus(), ff_BA * inFlux->R2min()));
// eigenmode 2 -> eigenmode 1: scattering and then reflection
const WavevectorInfo q21_TR(ki_2T, kf_1R, wavelength);
ff_BA = thePolFF(q21_TR);
SpinMatrix M21_SR(-DotProduct(outFlux->R1min(), ff_BA * inFlux->T2plus()),
+DotProduct(outFlux->R1plus(), ff_BA * inFlux->T2plus()),
-DotProduct(outFlux->R1min(), ff_BA * inFlux->T2min()),
+DotProduct(outFlux->R1plus(), ff_BA * inFlux->T2min()));
// eigenmode 2 -> eigenmode 1: reflection, scattering and again reflection
const WavevectorInfo q21_RR(ki_2R, kf_1R, wavelength);
ff_BA = thePolFF(q21_RR);
SpinMatrix M21_RSR(-DotProduct(outFlux->R1min(), ff_BA * inFlux->R2plus()),
+DotProduct(outFlux->R1plus(), ff_BA * inFlux->R2plus()),
-DotProduct(outFlux->R1min(), ff_BA * inFlux->R2min()),
+DotProduct(outFlux->R1plus(), ff_BA * inFlux->R2min()));
// eigenmode 2 -> eigenmode 2: direct scattering
const WavevectorInfo q22_TT(ki_2T, kf_2T, wavelength);
ff_BA = thePolFF(q22_TT);
SpinMatrix M22_S(-DotProduct(outFlux->T2min(), ff_BA * inFlux->T2plus()),
+DotProduct(outFlux->T2plus(), ff_BA * inFlux->T2plus()),
-DotProduct(outFlux->T2min(), ff_BA * inFlux->T2min()),
+DotProduct(outFlux->T2plus(), ff_BA * inFlux->T2min()));
// eigenmode 2 -> eigenmode 2: reflection and then scattering
const WavevectorInfo q22_RT(ki_2R, kf_2T, wavelength);
ff_BA = thePolFF(q22_RT);
SpinMatrix M22_RS(-DotProduct(outFlux->T2min(), ff_BA * inFlux->R2plus()),
+DotProduct(outFlux->T2plus(), ff_BA * inFlux->R2plus()),
-DotProduct(outFlux->T2min(), ff_BA * inFlux->R2min()),
+DotProduct(outFlux->T2plus(), ff_BA * inFlux->R2min()));
// eigenmode 2 -> eigenmode 2: scattering and then reflection
const WavevectorInfo q22_TR(ki_2T, kf_2R, wavelength);
ff_BA = thePolFF(q22_TR);
SpinMatrix M22_SR(-DotProduct(outFlux->R2min(), ff_BA * inFlux->T2plus()),
+DotProduct(outFlux->R2plus(), ff_BA * inFlux->T2plus()),
-DotProduct(outFlux->R2min(), ff_BA * inFlux->T2min()),
+DotProduct(outFlux->R2plus(), ff_BA * inFlux->T2min()));
// eigenmode 2 -> eigenmode 2: reflection, scattering and again reflection
const WavevectorInfo q22_RR(ki_2R, kf_2R, wavelength);
ff_BA = thePolFF(q22_RR);
SpinMatrix M22_RSR(-DotProduct(outFlux->R2min(), ff_BA * inFlux->R2plus()),
+DotProduct(outFlux->R2plus(), ff_BA * inFlux->R2plus()),
-DotProduct(outFlux->R2min(), ff_BA * inFlux->R2min()),
+DotProduct(outFlux->R2plus(), ff_BA * inFlux->R2min()));
return {{q11_TT, M11_S}, {q12_TT, M12_S}, {q21_TT, M21_S}, {q22_TT, M22_S},
{q11_RT, M11_RS}, {q12_RT, M12_RS}, {q21_RT, M21_RS}, {q22_RT, M22_RS},
{q11_TR, M11_SR}, {q12_TR, M12_SR}, {q21_TR, M21_SR}, {q22_TR, M22_SR},
{q11_RR, M11_RSR}, {q12_RR, M12_RSR}, {q21_RR, M21_RSR}, {q22_RR, M22_RSR}};
}
|