1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Resample/Particle/ReCompound.cpp
//! @brief Implements class ReCompound.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Resample/Particle/ReCompound.h"
#include "Base/Type/Span.h"
#include "Base/Util/Assert.h"
#include "Base/Vector/WavevectorInfo.h" // debug
ReCompound::ReCompound(const std::optional<size_t>& i_layer)
: IReParticle(i_layer)
{
}
ReCompound::~ReCompound() = default;
ReCompound* ReCompound::clone() const
{
auto* result = new ReCompound(i_layer());
for (auto* m_component : m_components)
result->addFormfactor(*m_component);
return result;
}
double ReCompound::radialExtension() const
{
double result{0.0};
for (auto* m_component : m_components)
result += m_component->radialExtension();
return result;
}
Span ReCompound::zSpan() const
{
ASSERT(!m_components.empty());
Span result = m_components[0]->zSpan();
for (size_t i = 1; i < m_components.size(); ++i)
result = Span::unite(result, m_components[i]->zSpan());
return result;
}
void ReCompound::addFormfactor(const IReParticle& formfactor)
{
m_components.push_back(formfactor.clone());
}
void ReCompound::setAmbientMaterial(const Material& material)
{
for (auto* m_component : m_components)
m_component->setAmbientMaterial(material);
}
complex_t ReCompound::theFF(const WavevectorInfo& wavevectors) const
{
complex_t result(0.0, 0.0);
for (auto* m_component : m_components)
result += m_component->theFF(wavevectors);
return result;
}
SpinMatrix ReCompound::thePolFF(const WavevectorInfo& wavevectors) const
{
SpinMatrix result;
for (auto* m_component : m_components)
result += m_component->thePolFF(wavevectors);
return result;
}
std::vector<const IReParticle*> ReCompound::components() const
{
std::vector<const IReParticle*> result;
for (const auto& comp : m_components)
result.push_back(comp);
return result;
}
bool ReCompound::consideredEqualTo(const IReParticle& ire) const
{
if (const auto* re = dynamic_cast<const ReCompound*>(&ire)) {
const auto& other = re->components();
if (m_components.size() != other.size())
return false;
for (size_t i = 0; i < m_components.size(); i++)
if (!m_components[i]->consideredEqualTo(*other[i]))
return false;
if (!m_components.empty()) {
const R3 shift = posDiff(m_components.front()->position(), other.front()->position());
for (size_t i = 1; i < m_components.size(); i++)
if (shift != posDiff(m_components[i]->position(), other[i]->position()))
return false;
}
return IReParticle::consideredEqualTo(ire);
}
return false;
}
const R3* ReCompound::position() const
{
if (m_components.empty())
return nullptr;
return m_components.front()->position();
}
|