1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Resample/Processed/Slicer.cpp
//! @brief Implements function Compute::Slicing::sliceFormfactor.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Resample/Processed/Slicer.h"
#include "Base/Math/Functions.h"
#include "Base/Type/Span.h"
#include "Base/Util/Assert.h"
#include "Base/Vector/RotMatrix.h"
#include "Resample/Particle/ReCompound.h"
#include "Resample/Particle/ReMesocrystal.h"
#include "Resample/Particle/ReParticle.h"
#include "Resample/Slice/ZLimits.h"
#include "Sample/HardParticle/HardParticles.h"
#include "Sample/Material/MaterialUtil.h"
#include "Sample/Particle/Compound.h"
#include "Sample/Particle/CoreAndShell.h"
#include "Sample/Particle/Crystal.h"
#include "Sample/Particle/Mesocrystal.h"
#include "Sample/Particle/Particle.h"
#include "Sample/Scattering/Rotations.h"
#include <numbers>
using std::numbers::pi;
namespace {
IFormfactor* doSlice(const IFormfactor* ff, double dz_bottom, double dz_top)
{
if (const auto* f = dynamic_cast<const Pyramid2*>(ff)) {
double dbase_edge = 2 * dz_bottom * Math::cot(f->alpha());
return new Pyramid2(f->length() - dbase_edge, f->width() - dbase_edge,
f->height() - dz_bottom - dz_top, f->alpha());
}
if (const auto* f = dynamic_cast<const Box*>(ff)) {
return new Box(f->length(), f->width(), f->height() - dz_bottom - dz_top);
}
if (const auto* f = dynamic_cast<const Cone*>(ff)) {
double dradius = dz_bottom * Math::cot(f->alpha());
return new Cone(f->radius() - dradius, f->height() - dz_bottom - dz_top, f->alpha());
}
if (const auto* f = dynamic_cast<const Pyramid6*>(ff)) {
double dbase_edge = 2 / sqrt(3) * dz_bottom * Math::cot(f->alpha());
return new Pyramid6(f->baseEdge() - dbase_edge, f->height() - dz_bottom - dz_top,
f->alpha());
}
if (const auto* f = dynamic_cast<const Bipyramid4*>(ff)) {
if (dz_bottom > f->base_height()) {
double dbase_edge = 2 * (dz_bottom - f->base_height()) * Math::cot(f->alpha());
return new Pyramid4(f->length() - dbase_edge, f->height() - dz_bottom - dz_top,
f->alpha());
}
if (dz_top > f->heightRatio() * f->base_height()) {
double dbase_edge = 2 * (f->base_height() - dz_bottom) * Math::cot(f->alpha());
return new Pyramid4(f->length() - dbase_edge, f->height() - dz_bottom - dz_top,
pi - f->alpha());
}
{
return new Bipyramid4(f->length(), f->base_height() - dz_bottom,
f->heightRatio() * f->base_height() - dz_top, f->alpha());
}
}
if (const auto* f = dynamic_cast<const Cylinder*>(ff)) {
return new Cylinder(f->radius(), f->height() - dz_bottom - dz_top);
}
if (const auto* f = dynamic_cast<const EllipsoidalCylinder*>(ff)) {
return new EllipsoidalCylinder(f->radiusX(), f->radiusY(),
f->height() - dz_bottom - dz_top);
}
if (const auto* f = dynamic_cast<const HorizontalCylinder*>(ff)) {
return new HorizontalCylinder(f->radius(), f->length(), f->slice_bottom() + dz_bottom,
f->slice_top() - dz_top);
}
if (const auto* f = dynamic_cast<const Sphere*>(ff)) {
return new SphericalSegment(f->radius(), dz_top, dz_bottom);
}
if (const auto* f = dynamic_cast<const Spheroid*>(ff)) {
return new SpheroidalSegment(f->radiusXY(), f->radiusZ(), dz_top, dz_bottom);
}
if (const auto* f = dynamic_cast<const LongBoxGauss*>(ff)) {
return new LongBoxGauss(f->length(), f->width(), f->height() - dz_bottom - dz_top);
}
if (const auto* f = dynamic_cast<const LongBoxLorentz*>(ff)) {
return new LongBoxLorentz(f->length(), f->width(), f->height() - dz_bottom - dz_top);
}
if (const auto* f = dynamic_cast<const Prism3*>(ff)) {
return new Prism3(f->baseEdge(), f->height() - dz_bottom - dz_top);
}
if (const auto* f = dynamic_cast<const Prism6*>(ff)) {
return new Prism6(f->baseEdge(), f->height() - dz_bottom - dz_top);
}
if (const auto* f = dynamic_cast<const Pyramid4*>(ff)) {
double dbaseEdge = 2 * dz_bottom * Math::cot(f->alpha());
return new Pyramid4(f->baseEdge() - dbaseEdge, f->height() - dz_bottom - dz_top,
f->alpha());
}
if (const auto* f = dynamic_cast<const Pyramid3*>(ff)) {
double dbaseEdge = 2 * sqrt(3) * dz_bottom * Math::cot(f->alpha());
return new Pyramid3(f->baseEdge() - dbaseEdge, f->height() - dz_bottom - dz_top,
f->alpha());
}
if (const auto* f = dynamic_cast<const SphericalSegment*>(ff)) {
return new SphericalSegment(f->radius(), f->cutFromTop() + dz_top,
f->cutFromBottom() + dz_bottom);
}
if (const auto* f = dynamic_cast<const SpheroidalSegment*>(ff)) {
return new SpheroidalSegment(f->radiusXY(), f->radiusZ(), f->cutFromTop() + dz_top,
f->cutFromBottom() + dz_bottom);
}
throw std::runtime_error("Slicing of " + ff->className() + " not supported");
}
ReParticle* createParticleSlice(const IFormfactor* ff, ZLimits limits, const R3& position,
const IRotation* rot)
{
const Span span = ff->spanZ(rot) + position.z();
if (span.hig() <= limits.low() || span.low() >= limits.hig())
return nullptr;
const RotMatrix* rotMatrix =
rot && !rot->isIdentity() ? new RotMatrix(rot->rotMatrix()) : nullptr;
if (limits.low() <= span.low() && span.hig() <= limits.hig())
return new ReParticle(ff->clone(), new R3(position), rotMatrix);
if (!ff->canSliceAnalytically(rot))
throw std::runtime_error("Slicing of " + ff->className()
+ " not supported for the given rotation");
const double height = span.hig() - span.low();
R3 new_position(position);
double z_bottom = position.z();
double z_top = position.z() + height;
double dz_top = std::isinf(limits.hig()) ? -1 : z_top - limits.hig();
double dz_bottom = std::isinf(limits.low()) ? -1 : limits.low() - z_bottom;
ASSERT(dz_top >= 0 || dz_bottom >= 0);
ASSERT(dz_bottom <= height);
ASSERT(dz_top <= height);
if (dz_bottom < 0)
dz_bottom = 0;
if (dz_top < 0)
dz_top = 0;
if (dz_bottom > 0)
new_position.setZ(limits.low());
IFormfactor* slicedff = doSlice(ff, dz_bottom, dz_top);
return new ReParticle(slicedff, new R3(new_position), rotMatrix);
}
//! Recursively processes the basis of a mesocrystal.
IReParticle* processBasis(const IParticle* basis, const Material& ambientMat)
{
if (const auto* b = dynamic_cast<const Compound*>(basis)) {
const auto& particles = b->decompose();
ASSERT(!particles.empty());
auto* result = new ReCompound;
for (const auto* particle : particles) {
std::unique_ptr<IReParticle> re(processBasis(particle, ambientMat));
result->addFormfactor(*re);
}
return result;
} else if (dynamic_cast<const CoreAndShell*>(basis)) {
throw std::runtime_error("Mesocrystal with CoreAndShell basis not yet supported");
}
// Remaining case: the basis is a single particle.
const auto* p = dynamic_cast<const Particle*>(basis);
ASSERT(p);
const IRotation* rot = p->rotation();
auto particleSlice = std::make_unique<ReParticle>(
p->pFormfactor()->clone(), new const R3(p->particlePosition()),
rot && !rot->isIdentity() ? new const RotMatrix(rot->rotMatrix()) : nullptr);
if (!particleSlice)
return {};
double volume = particleSlice->volume();
Material transformed_material(p->rotation()
? p->material()->rotatedMaterial(p->rotation()->rotMatrix())
: *p->material());
particleSlice->setMaterial(transformed_material);
particleSlice->setAdmixedFraction(volume);
particleSlice->setAdmixedMaterial(transformed_material);
particleSlice->setAmbientMaterial(ambientMat);
return particleSlice.release();
}
} // namespace
OwningVector<IReParticle> Compute::Slicing::particlesInSlice(const IParticle* particle,
const ZLimits& limits,
const Material& ambientMat,
const MesoOptions& meso_options)
{
if (const auto* p = dynamic_cast<const Particle*>(particle)) {
ASSERT(p->pFormfactor());
std::unique_ptr<ReParticle> particleSlice(
createParticleSlice(p->pFormfactor(), limits, p->particlePosition(), p->rotation()));
if (!particleSlice)
return {};
double volume = particleSlice->volume();
Material transformed_material(
p->rotation() ? p->material()->rotatedMaterial(p->rotation()->rotMatrix())
: *p->material());
particleSlice->setMaterial(transformed_material);
particleSlice->setAdmixedFraction(volume);
particleSlice->setAdmixedMaterial(transformed_material);
particleSlice->setAmbientMaterial(ambientMat);
OwningVector<IReParticle> result;
result.push_back(particleSlice.release());
return result;
}
if (const auto* p = dynamic_cast<const CoreAndShell*>(particle)) {
const Particle* core = p->coreParticle();
const Particle* shell = p->shellParticle();
ASSERT(core && shell);
// shell
std::unique_ptr<Particle> P_shell(shell->clone());
if (p->rotation())
P_shell->rotate(*p->rotation());
P_shell->translate(p->particlePosition());
OwningVector<IReParticle> shell_slices =
particlesInSlice(P_shell.get(), limits, ambientMat, meso_options);
if (shell_slices.empty())
return {};
ASSERT(shell_slices.size() == 1);
IReParticle* sliced_shell = shell_slices.release_back();
if (!sliced_shell)
return {};
const Material& shell_material = sliced_shell->admixed().material;
// core
std::unique_ptr<Particle> P_core(core->clone());
if (p->rotation())
P_core->rotate(*p->rotation());
P_core->translate(p->particlePosition());
OwningVector<IReParticle> core_slices =
particlesInSlice(P_core.get(), limits, shell_material, meso_options);
ASSERT(core_slices.size() == 1);
IReParticle* sliced_core = core_slices.release_back();
// if core out of limits, return sliced shell
if (!sliced_core) {
OwningVector<IReParticle> result;
result.push_back(sliced_shell);
return result;
}
sliced_shell->setAdmixedFraction(sliced_shell->admixedFraction()
- sliced_core->admixedFraction());
OwningVector<IReParticle> result;
result.push_back(sliced_core);
result.push_back(sliced_shell);
return result;
}
if (dynamic_cast<const Compound*>(particle))
throw std::runtime_error("Compound does not yet support slicing");
if (const auto* p = dynamic_cast<const Mesocrystal*>(particle)) {
const Crystal* crystal = &p->particleStructure();
const IFormfactor* meso_formfactor = p->outerShape();
ASSERT(crystal && meso_formfactor);
double unit_cell_volume = crystal->lattice()->unitCellVolume();
if (unit_cell_volume <= 0)
return {};
std::unique_ptr<ReParticle> new_shape(
createParticleSlice(meso_formfactor, limits, p->particlePosition(), p->rotation()));
const std::unique_ptr<Crystal> new_crystal(
crystal->transformed(p->particlePosition(), p->rotation()));
const std::unique_ptr<IReParticle> new_basis(
processBasis(new_crystal->basis(), ambientMat));
auto mc = std::make_unique<ReMesocrystal>(std::optional<size_t>{}, *new_crystal->lattice(),
*new_basis, *new_shape, meso_options,
new_crystal->position_variance());
if (!meso_options.use_reciprocal_sum)
mc->setBasisIndexes(p->calcBasisIndexes());
std::vector<double> weights;
std::vector<Material> materials;
double volume = 0;
for (const auto* pp : crystal->basis()->decompose()) {
volume += pp->volume();
weights.push_back(pp->volume());
materials.push_back(pp->avgeMaterial());
}
mc->setAdmixedFraction(volume / unit_cell_volume);
mc->setAdmixedMaterial(
MaterialUtil::averagedMaterial("MesocrystalAvgeMat", weights, materials));
OwningVector<IReParticle> result;
result.push_back(mc.release());
return result;
}
ASSERT_NEVER;
}
|