1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Resample/Slice/Slice.cpp
//! @brief Implements class Slice.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Resample/Slice/Slice.h"
#include "Base/Spin/SpinMatrix.h"
#include "Resample/Slice/SliceStack.h"
#include "Sample/Interface/Roughness.h"
#include "Sample/Material/MaterialUtil.h"
#include <numbers>
#include <utility>
using std::numbers::pi;
Slice::Slice(const ZLimits& zRange, const Material& material, const R3& B_field,
const Roughness* const roughness, double rms)
: m_z_range(zRange)
, m_material(material)
, m_B_field(B_field)
, m_top_roughness(roughness)
, m_top_rms(rms)
{
}
Slice::~Slice() = default;
double Slice::low() const
{
return m_z_range.low();
}
double Slice::hig() const
{
return m_z_range.hig();
}
double Slice::higOr0() const
{
return m_z_range.higOr0();
}
double Slice::thicknessOr0() const
{
return m_z_range.thicknessOr0();
}
complex_t Slice::scalarReducedPotential(R3 k, double n_ref) const
{
complex_t n = m_material.refractiveIndex((2 * pi) / k.mag());
return MaterialUtil::ScalarReducedPotential(n, k, n_ref);
}
// ISSUE #394 currently unused
SpinMatrix Slice::polarizedReducedPotential(R3 k, double n_ref) const
{
complex_t n = m_material.refractiveIndex((2 * pi) / k.mag());
return MaterialUtil::PolarizedReducedPotential(n, m_B_field, k, n_ref);
}
void Slice::initBField(R3 h_field, double h_z)
{
// Temporary forbid z-magnetization in all layers (see issue #654)
if (m_material.magnetization().z() != 0)
throw std::runtime_error("Processing z-magnetization of layers is not implemented.");
static constexpr double Magnetic_Permeability = 4e-7 * pi;
m_B_field = Magnetic_Permeability * (h_field + m_material.magnetization());
m_B_field.setZ(Magnetic_Permeability * h_z);
}
void Slice::invertBField()
{
m_B_field = -m_B_field;
}
|