1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/Aggregate/Interference2DLattice.cpp
//! @brief Implements class Interference2DLattice.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/Aggregate/Interference2DLattice.h"
#include "Base/Math/IntegratorGK.h"
#include "Base/Util/Assert.h"
#include "Sample/Correlation/Profiles1D.h"
#include "Sample/Correlation/Profiles2D.h"
#include <algorithm>
namespace {
// maximum value for qx*Lambdax and qy*lambday
const int nmax = 20;
// minimum number of neighboring reciprocal lattice points to use
const int min_points = 4;
std::pair<double, double> toReciprocal(double qX, double qY, double a, double b, double alpha,
double gamma)
{
double qa = (a * qX * std::cos(gamma) - a * qY * std::sin(gamma)) / (2 * pi);
double qb = (b * qX * std::cos(alpha - gamma) + b * qY * std::sin(alpha - gamma)) / (2 * pi);
return {qa, qb};
}
//! Calculates bounding values of reciprocal lattice coordinates that contain the centered
//! rectangle with a corner defined by qX and qY
std::pair<double, double> boundingQs(double qX, double qY, double a, double b, double alpha,
double gamma)
{
auto q_bounds_1 = toReciprocal(qX, qY, a, b, alpha, gamma);
auto q_bounds_2 = toReciprocal(qX, -qY, a, b, alpha, gamma);
double qa_max = std::max(std::abs(q_bounds_1.first), std::abs(q_bounds_2.first));
double qb_max = std::max(std::abs(q_bounds_1.second), std::abs(q_bounds_2.second));
return {qa_max, qb_max};
}
} // namespace
Interference2DLattice::Interference2DLattice(const Lattice2D& lattice)
: IInterference(0)
, m_integrate_xi(false)
{
m_lattice.reset(lattice.clone());
BasicLattice2D base_lattice(m_lattice->length1(), m_lattice->length2(),
m_lattice->latticeAngle(), 0.);
m_sbase = base_lattice.reciprocalBases();
}
Interference2DLattice::~Interference2DLattice() = default;
Interference2DLattice* Interference2DLattice::clone() const
{
auto* result = new Interference2DLattice(*m_lattice);
result->setPositionVariance(m_position_var);
result->setIntegrationOverXi(integrationOverXi());
if (m_decay)
result->setDecayFunction(*m_decay);
return result;
}
//! Sets two-dimensional decay function.
//! @param decay: two-dimensional decay function in reciprocal space
void Interference2DLattice::setDecayFunction(const IProfile2D& decay)
{
m_decay.reset(decay.clone());
// number of reciprocal lattice points to use
auto q_bounds = boundingQs(nmax / m_decay->decayLengthX(), nmax / m_decay->decayLengthY(),
m_lattice->length1(), m_lattice->length2(),
m_lattice->latticeAngle(), m_decay->gamma());
m_na = static_cast<int>(std::lround(q_bounds.first + 0.5));
m_nb = static_cast<int>(std::lround(q_bounds.second + 0.5));
m_na = std::max(m_na, min_points);
m_nb = std::max(m_nb, min_points);
}
void Interference2DLattice::setIntegrationOverXi(bool integrate_xi)
{
m_integrate_xi = integrate_xi;
m_lattice->setRotationEnabled(!m_integrate_xi); // deregister Xi in the case of integration
}
const Lattice2D& Interference2DLattice::lattice() const
{
ASSERT(m_lattice);
return *m_lattice;
}
double Interference2DLattice::particleDensity() const
{
double area = m_lattice->unitCellArea();
return area == 0.0 ? 0.0 : 1.0 / area;
}
std::vector<const INode*> Interference2DLattice::nodeChildren() const
{
return std::vector<const INode*>() << m_decay << m_lattice;
}
double Interference2DLattice::iff_without_dw(const R3& q) const
{
if (!m_decay)
throw std::runtime_error("Interference2DLattice needs a decay function");
if (!m_integrate_xi)
return interferenceForXi(m_lattice->rotationAngle(), q.x(), q.y());
double range = pi;
return RealIntegrator().integrate(
[&](double xi) -> double { return interferenceForXi(xi, q.x(), q.y()); }, 0.0, range)
/ range;
}
double Interference2DLattice::interferenceForXi(double xi, double qx, double qy) const
{
double result = 0.0;
auto q_frac = calculateReciprocalVectorFraction(qx, qy, xi);
for (int i = -m_na - 1; i < m_na + 2; ++i) {
for (int j = -m_nb - 1; j < m_nb + 2; ++j) {
const double px = q_frac.first + i * m_sbase.m_asx + j * m_sbase.m_bsx;
const double py = q_frac.second + i * m_sbase.m_asy + j * m_sbase.m_bsy;
result += interferenceAtOneRecLatticePoint(px, py);
}
}
return particleDensity() * result;
}
double Interference2DLattice::interferenceAtOneRecLatticePoint(double qx, double qy) const
{
if (!m_decay)
throw std::runtime_error("Interference2DLattice needs a decay function");
double gamma = m_decay->gamma();
auto qXY = rotateOrthonormal(qx, qy, gamma);
return m_decay->decayFT2D(qXY.first, qXY.second);
}
// Rotate by angle gamma between orthonormal systems
std::pair<double, double> Interference2DLattice::rotateOrthonormal(double qx, double qy,
double gamma) const
{
double q_X = qx * std::cos(gamma) + qy * std::sin(gamma);
double q_Y = -qx * std::sin(gamma) + qy * std::cos(gamma);
return {q_X, q_Y};
}
// (qx, qy) are in the global reciprocal reference frame
// the returned values (qx_frac, qy_frac) are in the rotated frame with first lattice basis
// vector aligned with the real-space x-axis (same frame as the one stored in m_sbase)
std::pair<double, double>
Interference2DLattice::calculateReciprocalVectorFraction(double qx, double qy, double xi) const
{
double a = m_lattice->length1();
double b = m_lattice->length2();
double alpha = m_lattice->latticeAngle();
// first rotate the input to the system of m_sbase:
double qx_rot = qx * std::cos(xi) + qy * std::sin(xi);
double qy_rot = -qx * std::sin(xi) + qy * std::cos(xi);
// find the reciprocal lattice coordinates of (qx_rot, qy_rot):
int qa_int = static_cast<int>(std::lround(a * qx_rot / (2 * pi)));
int qb_int = static_cast<int>(
std::lround(b * (qx_rot * std::cos(alpha) + qy_rot * std::sin(alpha)) / (2 * pi)));
// take the fractional part only (in m_sbase coordinates)
double qx_frac = qx_rot - qa_int * m_sbase.m_asx - qb_int * m_sbase.m_bsx;
double qy_frac = qy_rot - qa_int * m_sbase.m_asy - qb_int * m_sbase.m_bsy;
return {qx_frac, qy_frac};
}
|