1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/Aggregate/Interference2DParacrystal.cpp
//! @brief Implements class Interference2DParacrystal.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/Aggregate/Interference2DParacrystal.h"
#include "Base/Math/IntegratorGK.h"
#include "Base/Util/Assert.h"
#include <limits>
Interference2DParacrystal::Interference2DParacrystal(const Lattice2D& lattice,
double damping_length, double domain_size_1,
double domain_size_2)
: IInterference(0)
, m_integrate_xi(false)
, m_damping_length(damping_length)
, m_domain_sizes({domain_size_1, domain_size_2})
{
m_lattice.reset(lattice.clone());
validateOrThrow();
}
Interference2DParacrystal::~Interference2DParacrystal() = default;
Interference2DParacrystal* Interference2DParacrystal::clone() const
{
auto* result = new Interference2DParacrystal(*m_lattice, m_damping_length, m_domain_sizes[0],
m_domain_sizes[1]);
result->setPositionVariance(m_position_var);
if (m_pdf1 && m_pdf2)
result->setProbabilityDistributions(*m_pdf1, *m_pdf2);
result->setIntegrationOverXi(m_integrate_xi);
return result;
}
//! Sets the probability distributions (Fourier transformed) for the two lattice directions.
//! @param pdf_1: probability distribution in first lattice direction
//! @param pdf_2: probability distribution in second lattice direction
void Interference2DParacrystal::setProbabilityDistributions(const IProfile2D& pdf_1,
const IProfile2D& pdf_2)
{
m_pdf1.reset(pdf_1.clone());
m_pdf2.reset(pdf_2.clone());
}
//! Sets the damping length.
//! @param damping_length: the damping (coherence) length of the paracrystal in nanometers
void Interference2DParacrystal::setDampingLength(double damping_length)
{
m_damping_length = damping_length;
}
double Interference2DParacrystal::particleDensity() const
{
double area = m_lattice->unitCellArea();
return area == 0.0 ? 0.0 : 1.0 / area;
}
std::vector<const INode*> Interference2DParacrystal::nodeChildren() const
{
return std::vector<const INode*>() << m_pdf1 << m_pdf2 << m_lattice;
}
double Interference2DParacrystal::iff_without_dw(const R3& q) const
{
double range = pi;
if (!m_integrate_xi)
return interferenceForXi(m_lattice->rotationAngle(), q.x(), q.y());
return RealIntegrator().integrate(
[&](double xi) -> double { return interferenceForXi(xi, q.x(), q.y()); }, 0.0, range)
/ range;
}
//! Sets the sizes of coherence domains.
//! @param size_1: coherence domain size along the first basis vector in nanometers
//! @param size_2: coherence domain size along the second basis vector in nanometers
void Interference2DParacrystal::setDomainSizes(double size_1, double size_2)
{
m_domain_sizes = {size_1, size_2};
}
void Interference2DParacrystal::transformToPrincipalAxes(double qx, double qy, double gamma,
double delta, double& q_pa_1,
double& q_pa_2) const
{
q_pa_1 = qx * std::cos(gamma) + qy * std::sin(gamma);
q_pa_2 = qx * std::cos(gamma + delta) + qy * std::sin(gamma + delta);
}
//! Returns interference function for fixed angle xi.
double Interference2DParacrystal::interferenceForXi(double xi, double qx, double qy) const
{
// don't touch order of computation; problems under Windows
double rx = interference1D(qx, qy, xi, 0);
double ry = interference1D(qx, qy, xi + m_lattice->latticeAngle(), 1);
return rx * ry;
}
//! Returns interference function for fixed xi in the dimension determined by the given index.
double Interference2DParacrystal::interference1D(double qx, double qy, double xi,
size_t index) const
{
ASSERT(m_validated);
ASSERT(index <= 1);
ASSERT(m_pdf1 && m_pdf2);
double length = index ? m_lattice->length2() : m_lattice->length1();
int n = static_cast<int>(std::abs(m_domain_sizes[index] / length));
auto nd = static_cast<double>(n);
complex_t fp = FTPDF(qx, qy, xi, index);
if (n < 1)
return ((1.0 + fp) / (1.0 - fp)).real();
if (std::norm(1.0 - fp) < std::numeric_limits<double>::epsilon())
return nd;
// for (1-fp)*nd small, take the series expansion to second order in nd*(1-fp)
if (std::abs(1.0 - fp) * nd < 2e-4) {
complex_t intermediate =
(nd - 1.0) / 2.0 + (nd * nd - 1.0) * (fp - 1.0) / 6.0
+ (nd * nd * nd - 2.0 * nd * nd - nd + 2.0) * (fp - 1.0) * (fp - 1.0) / 24.0;
return 1.0 + 2.0 * intermediate.real();
}
complex_t tmp;
if (std::abs(fp) == 0.0
|| std::log(std::abs(fp)) * nd < std::log(std::numeric_limits<double>::min()))
tmp = 0.0;
else
tmp = std::pow(fp, n);
complex_t intermediate = fp / (1.0 - fp) - fp * (1.0 - tmp) / nd / (1.0 - fp) / (1.0 - fp);
return 1.0 + 2.0 * intermediate.real();
}
complex_t Interference2DParacrystal::FTPDF(double qx, double qy, double xi, size_t index) const
{
ASSERT(m_validated);
double length = (index ? m_lattice->length2() : m_lattice->length1());
const IProfile2D* pdf = (index ? m_pdf2.get() : m_pdf1.get());
double qa = qx * length * std::cos(xi) + qy * length * std::sin(xi);
complex_t phase = exp_I(qa);
// transform q to principal axes:
double qp1, qp2;
double gamma = xi + pdf->gamma();
double delta = pdf->delta();
transformToPrincipalAxes(qx, qy, gamma, delta, qp1, qp2);
double amplitude = pdf->standardizedFT2D(qp1, qp2);
complex_t result = phase * amplitude;
if (m_damping_length != 0.0)
result *= std::exp(-length / m_damping_length);
return result;
}
std::vector<double> Interference2DParacrystal::domainSizes() const
{
return {m_domain_sizes[0], m_domain_sizes[1]};
}
//! Enables/disables averaging over the lattice rotation angle.
//! @param integrate_xi: integration flag
void Interference2DParacrystal::setIntegrationOverXi(bool integrate_xi)
{
m_integrate_xi = integrate_xi;
m_lattice->setRotationEnabled(!m_integrate_xi); // deregister Xi in the case of integration
}
const Lattice2D& Interference2DParacrystal::lattice() const
{
ASSERT(m_lattice);
return *m_lattice;
}
std::string Interference2DParacrystal::validate() const
{
std::vector<std::string> errs;
requestGe0(errs, m_damping_length, "DampingLength");
requestGe0(errs, m_domain_sizes[0], "DomainSize1");
requestGe0(errs, m_domain_sizes[1], "DomainSize2");
if (!errs.empty())
return jointError(errs);
m_validated = true;
return "";
}
|