File: IPeakShape.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (317 lines) | stat: -rw-r--r-- 12,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sample/Correlation/IPeakShape.cpp
//! @brief     Implements the interface IPeakShape and subclasses.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sample/Correlation/IPeakShape.h"
#include "Base/Math/Bessel.h"
#include "Base/Math/IntegratorGK.h"
#include <limits>
#include <numbers>

using std::numbers::pi;

namespace {

const double maxkappa = std::log(1.0 / std::numeric_limits<double>::epsilon()) / 2.0;
const double maxkappa2 = std::log(std::numeric_limits<double>::max());

double FisherDistribution(double x, double kappa)
{
    if (kappa <= 0.0)
        return 1.0 / (4.0 * pi);
    double prefactor = kappa / (4.0 * pi);
    if (kappa > maxkappa)
        return 2.0 * prefactor * std::exp(kappa * (x - 1.0));
    return prefactor * std::exp(kappa * x) / std::sinh(kappa);
}

double FisherPrefactor(double kappa)
{
    if (kappa <= 0.0)
        return 1.0 / (4.0 * pi);
    if (kappa > maxkappa)
        return kappa / 2.0 / pi;
    return kappa * std::exp(kappa) / 4.0 / pi / std::sinh(kappa);
}

double MisesPrefactor(double kappa)
{
    if (kappa <= 0.0)
        return 1.0 / ((2 * pi));
    if (kappa > maxkappa2)
        return std::sqrt(kappa / 2.0 / pi) / (1.0 + 1.0 / (8.0 * kappa));
    return std::exp(kappa) / ((2 * pi) * Math::Bessel::I0(kappa));
}

double Gauss3D(double q2, double domainsize)
{
    double norm_factor = std::pow(domainsize / std::sqrt((2 * pi)), 3.0);
    double exponent = -q2 * domainsize * domainsize / 2.0;
    return norm_factor * std::exp(exponent);
}

double Cauchy3D(double q2, double domainsize)
{
    double lorentz1 = domainsize / (1.0 + q2 * domainsize * domainsize) / pi;
    return domainsize * lorentz1 * lorentz1;
}

} // namespace

//  ************************************************************************************************
//  interface IPeakShape
//  ************************************************************************************************

IPeakShape::IPeakShape(const std::vector<double>& PValues)
    : INode(PValues)
{
}

IPeakShape::~IPeakShape() = default;

//  ************************************************************************************************
//  class IsotropicGaussPeakShape
//  ************************************************************************************************

IsotropicGaussPeakShape::IsotropicGaussPeakShape(double max_intensity, double domainsize)
    : m_max_intensity(max_intensity)
    , m_domainsize(domainsize)
{
}

IsotropicGaussPeakShape::~IsotropicGaussPeakShape() = default;

IsotropicGaussPeakShape* IsotropicGaussPeakShape::clone() const
{
    return new IsotropicGaussPeakShape(m_max_intensity, m_domainsize);
}

double IsotropicGaussPeakShape::peakDistribution(const R3& q) const
{
    double q_norm = q.mag2();
    return m_max_intensity * Gauss3D(q_norm, m_domainsize);
}

double IsotropicGaussPeakShape::peakDistribution(const R3& q, const R3& q_lattice_point) const
{
    return peakDistribution(q - q_lattice_point);
}

//  ************************************************************************************************
//  class IsotropicLorentzPeakShape
//  ************************************************************************************************

IsotropicLorentzPeakShape::IsotropicLorentzPeakShape(double max_intensity, double domainsize)
    : m_max_intensity(max_intensity)
    , m_domainsize(domainsize)
{
}

IsotropicLorentzPeakShape::~IsotropicLorentzPeakShape() = default;

IsotropicLorentzPeakShape* IsotropicLorentzPeakShape::clone() const
{
    return new IsotropicLorentzPeakShape(m_max_intensity, m_domainsize);
}

double IsotropicLorentzPeakShape::peakDistribution(const R3& q) const
{
    double q_norm = q.mag2();
    return m_max_intensity * Cauchy3D(q_norm, m_domainsize);
}

double IsotropicLorentzPeakShape::peakDistribution(const R3& q, const R3& q_lattice_point) const
{
    return peakDistribution(q - q_lattice_point);
}

//  ************************************************************************************************
//  class GaussFisherPeakShape
//  ************************************************************************************************

GaussFisherPeakShape::GaussFisherPeakShape(double max_intensity, double radial_size, double kappa)
    : m_max_intensity(max_intensity)
    , m_radial_size(radial_size)
    , m_kappa(kappa)
{
}

GaussFisherPeakShape::~GaussFisherPeakShape() = default;

GaussFisherPeakShape* GaussFisherPeakShape::clone() const
{
    return new GaussFisherPeakShape(m_max_intensity, m_radial_size, m_kappa);
}

double GaussFisherPeakShape::peakDistribution(const R3& q, const R3& q_lattice_point) const
{
    const double q_r = q.mag();
    const double q_lat_r = q_lattice_point.mag();
    const double dq2 = (q_r - q_lat_r) * (q_r - q_lat_r);
    if (q_lat_r == 0.0)
        return m_max_intensity * Gauss3D(dq2, m_radial_size);
    const double norm_factor = m_radial_size / std::sqrt((2 * pi));
    const double radial_part = norm_factor * std::exp(-dq2 * m_radial_size * m_radial_size / 2.0);
    double angular_part = 1.0;
    if (q_r * q_lat_r > 0.0) {
        const double dot_norm = q.dot(q_lattice_point) / q_r / q_lat_r;
        angular_part = FisherDistribution(dot_norm, m_kappa) / (q_r * q_r);
    }
    return m_max_intensity * radial_part * angular_part;
}

//  ************************************************************************************************
//  class LorentzFisherPeakShape
//  ************************************************************************************************

LorentzFisherPeakShape::LorentzFisherPeakShape(double max_intensity, double radial_size,
                                               double kappa)
    : m_max_intensity(max_intensity)
    , m_radial_size(radial_size)
    , m_kappa(kappa)
{
}

LorentzFisherPeakShape::~LorentzFisherPeakShape() = default;

LorentzFisherPeakShape* LorentzFisherPeakShape::clone() const
{
    return new LorentzFisherPeakShape(m_max_intensity, m_radial_size, m_kappa);
}

double LorentzFisherPeakShape::peakDistribution(const R3& q, const R3& q_lattice_point) const
{
    const double q_r = q.mag();
    const double q_lat_r = q_lattice_point.mag();
    const double dq2 = (q_r - q_lat_r) * (q_r - q_lat_r);
    if (q_lat_r == 0.0)
        return m_max_intensity * Cauchy3D(dq2, m_radial_size);
    const double radial_part = m_radial_size / (1.0 + dq2 * m_radial_size * m_radial_size) / pi;
    double angular_part = 1.0;
    if (q_r * q_lat_r > 0.0) {
        const double dot_norm = q.dot(q_lattice_point) / q_r / q_lat_r;
        angular_part = FisherDistribution(dot_norm, m_kappa) / (q_r * q_r);
    }
    return m_max_intensity * radial_part * angular_part;
}

//  ************************************************************************************************
//  class MisesFisherGaussPeakShape
//  ************************************************************************************************

MisesFisherGaussPeakShape::MisesFisherGaussPeakShape(double max_intensity, double radial_size,
                                                     const R3& zenith, double kappa_1,
                                                     double kappa_2)
    : m_max_intensity(max_intensity)
    , m_radial_size(radial_size)
    , m_zenith(zenith.unit_or_throw())
    , m_kappa_1(kappa_1)
    , m_kappa_2(kappa_2)
{
}

MisesFisherGaussPeakShape::~MisesFisherGaussPeakShape() = default;

MisesFisherGaussPeakShape* MisesFisherGaussPeakShape::clone() const
{
    return new MisesFisherGaussPeakShape(m_max_intensity, m_radial_size, m_zenith, m_kappa_1,
                                         m_kappa_2);
}

double MisesFisherGaussPeakShape::peakDistribution(const R3& q, const R3& q_lattice_point) const
{
    // radial part
    const double q_r = q.mag();
    const double q_lat_r = q_lattice_point.mag();
    const double dq2 = (q_r - q_lat_r) * (q_r - q_lat_r);
    if (q_lat_r == 0.0 || q_r == 0.0)
        return m_max_intensity * Gauss3D(dq2, m_radial_size);
    const double norm_factor = m_radial_size / std::sqrt((2 * pi));
    const double radial_part = norm_factor * std::exp(-dq2 * m_radial_size * m_radial_size / 2.0);
    // angular part
    const R3 vy = m_zenith.cross(q_lattice_point);
    const R3 zxq = m_zenith.cross(q);
    const R3 up = q_lattice_point.unit_or_throw();
    if (vy.mag2() <= 0.0 || zxq.mag2() <= 0.0) {
        const double x = q.unit_or_throw().dot(up);
        const double angular_part = FisherDistribution(x, m_kappa_1);
        return m_max_intensity * radial_part * angular_part;
    }
    const R3 uy = vy.unit_or_throw();
    const R3 ux = uy.cross(m_zenith);
    const R3 q_ortho = q - q.dot(m_zenith) * m_zenith;
    const double phi0 = std::acos(q_ortho.unit_or_throw().dot(ux));
    const double theta = std::acos(q.unit_or_throw().dot(m_zenith));
    const double pre_1 = FisherPrefactor(m_kappa_1);
    const double pre_2 = MisesPrefactor(m_kappa_2);
    const double integral = RealIntegrator().integrate(
        [&](double phi) -> double {
            const R3 u_q = std::sin(theta) * std::cos(phi) * ux
                           + std::sin(theta) * std::sin(phi) * uy + std::cos(theta) * m_zenith;
            const double fisher = std::exp(m_kappa_1 * (u_q.dot(up) - 1.0));
            const double mises = std::exp(m_kappa_2 * (std::cos(phi0 - phi) - 1.0));
            return fisher * mises;
        },
        0.0, (2 * pi));
    return m_max_intensity * radial_part * pre_1 * pre_2 * integral;
}

//  ************************************************************************************************
//  class MisesGaussPeakShape
//  ************************************************************************************************

MisesGaussPeakShape::MisesGaussPeakShape(double max_intensity, double radial_size, const R3& zenith,
                                         double kappa)
    : m_max_intensity(max_intensity)
    , m_radial_size(radial_size)
    , m_zenith(zenith.unit_or_throw())
    , m_kappa(kappa)
{
}

MisesGaussPeakShape::~MisesGaussPeakShape() = default;

MisesGaussPeakShape* MisesGaussPeakShape::clone() const
{
    return new MisesGaussPeakShape(m_max_intensity, m_radial_size, m_zenith, m_kappa);
}

double MisesGaussPeakShape::peakDistribution(const R3& q, const R3& q_lattice_point) const
{
    const R3 vy = m_zenith.cross(q_lattice_point);
    const R3 zxq = m_zenith.cross(q);
    if (vy.mag2() <= 0.0 || zxq.mag2() <= 0.0) {
        const double dq2 = (q - q_lattice_point).mag2();
        return m_max_intensity * Gauss3D(dq2, m_radial_size);
    }
    const double m_qr = q.mag();
    const R3 m_p = q_lattice_point;
    const R3 uy = vy.unit_or_throw();
    const R3 ux = uy.cross(m_zenith);
    const R3 q_ortho = q - q.dot(m_zenith) * m_zenith;
    const double phi0 = std::acos(q_ortho.unit_or_throw().dot(ux));
    const double theta = std::acos(q.unit_or_throw().dot(m_zenith));
    const double pre = MisesPrefactor(m_kappa);
    const double integral = RealIntegrator().integrate(
        [&](double phi) -> double {
            R3 q_rot = m_qr
                       * (std::sin(theta) * std::cos(phi) * ux
                          + std::sin(theta) * std::sin(phi) * uy + std::cos(theta) * m_zenith);
            const double dq2 = (q_rot - m_p).mag2();
            const double gauss = Gauss3D(dq2, m_radial_size);
            const double mises = std::exp(m_kappa * (std::cos(phi0 - phi) - 1.0));
            return gauss * mises;
        },
        0.0, (2 * pi));
    return m_max_intensity * pre * integral;
}