1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/HardParticle/Cone.cpp
//! @brief Implements class Cone.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/HardParticle/Cone.h"
#include "Base/Math/Bessel.h"
#include "Base/Math/Functions.h"
#include "Base/Math/IntegratorGK.h"
#include "Base/Util/Assert.h"
#include "Sample/Shape/DoubleEllipse.h"
#include <limits>
#include <numbers>
using std::numbers::pi;
Cone::Cone(const std::vector<double> P)
: IFormfactor(P)
, m_radius(m_P[0])
, m_height(m_P[1])
, m_alpha(m_P[2])
{
validateOrThrow();
}
Cone::Cone(double radius, double height, double alpha)
: Cone(std::vector<double>{radius, height, alpha})
{
}
complex_t Cone::formfactor(C3 q) const
{
ASSERT(m_validated);
const double R = m_radius;
const double H = m_height;
if (std::abs(q.mag()) < std::numeric_limits<double>::epsilon()) {
if (m_cot_alpha == 0.0)
return pi * R * R * H; // cylinder case
double R2 = R - H * m_cot_alpha;
double apex_height = R / m_cot_alpha;
return pi / 3. * (R * R * H + (R * R - R2 * R2) * (apex_height - H));
}
const complex_t q_p = std::sqrt(q.x() * q.x() + q.y() * q.y());
return (2 * pi)
* ComplexIntegrator().integrate(
[&](double Z) {
const double Rz = R - Z * m_cot_alpha;
return Rz * Rz * Math::Bessel::J1c(q_p * Rz) * exp_I(q.z() * Z);
},
0., H);
}
std::string Cone::validate() const
{
std::vector<std::string> errs;
requestGt0(errs, m_radius, "radius");
requestGt0(errs, m_height, "height");
m_cot_alpha = Math::cot(m_alpha);
if (m_alpha <= 0 || !std::isfinite(m_cot_alpha) || m_cot_alpha < 0)
errs.push_back("cone angle alpha " + std::to_string(m_alpha) + " out of bounds");
if (!errs.empty())
return jointError(errs);
if (m_cot_alpha * m_height > m_radius) {
std::ostringstream ostr;
ostr << "Cone -> Error in class initialization ";
ostr << "with parameters radius:" << m_radius;
ostr << " m_height:" << m_height;
ostr << " alpha[rad]:" << m_alpha << "\n\n";
ostr << "Check for 'height <= radius*tan(alpha)' failed.";
return jointError({"parameters violate condition height <= radius*tan(alpha)"});
}
m_cot_alpha = Math::cot(m_alpha);
double radius2 = m_radius - m_height * m_cot_alpha;
m_shape3D = std::make_unique<DoubleEllipseZ>(m_radius, m_radius, m_height, radius2, radius2);
m_validated = true;
return "";
}
bool Cone::contains(const R3& position) const
{
if (std::abs(position.x()) > radius() || std::abs(position.y()) > radius() || position.z() < 0
|| position.z() > height())
return false;
double R_z = radius() - position.z() / std::tan(alpha());
if (pow(position.x() / R_z, 2) + pow(position.y() / R_z, 2) <= 1)
return true;
return false;
}
|