1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/HardParticle/HorizontalCylinder.cpp
//! @brief Implements class HorizontalCylinder.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/HardParticle/HorizontalCylinder.h"
#include "Base/Math/Bessel.h"
#include "Base/Math/Functions.h"
#include "Base/Math/IntegratorGK.h"
#include "Base/Util/Assert.h"
#include "Sample/Shape/DoubleEllipse.h"
#include <numbers>
using std::numbers::pi;
HorizontalCylinder::HorizontalCylinder(const std::vector<double> P)
: IFormfactor(P)
, m_radius(m_P[0])
, m_length(m_P[1])
, m_slice_bottom(m_P[2])
, m_slice_top(m_P[3])
{
validateOrThrow();
}
HorizontalCylinder::HorizontalCylinder(double radius, double length, double slice_bottom,
double slice_top)
: HorizontalCylinder(std::vector<double>{radius, length, slice_bottom, slice_top})
{
}
HorizontalCylinder::HorizontalCylinder(double radius, double length)
: HorizontalCylinder(radius, length, -radius, +radius)
{
}
complex_t HorizontalCylinder::formfactor(C3 q) const
{
ASSERT(m_validated);
const double R = m_radius;
const double L = m_length;
const complex_t qL2 = q.x() * L / 2.;
const complex_t qR = std::sqrt(q.y() * q.y() + q.z() * q.z()) * R;
const complex_t axial_part = L * Math::sinc(qL2);
complex_t radial_part;
if (m_slice_bottom == -R && m_slice_top == +R)
radial_part = (2 * pi) * R * R * Math::Bessel::J1c(qR) * exp_I(q.z() * R);
else
// integration variable substituted as z = R * sin(t)
radial_part = 2. * pow(R, 2) * exp_I(q.z() * (-m_slice_bottom))
* ComplexIntegrator().integrate(
[=](double t) {
return pow(cos(t), 2) * Math::sinc(q.y() * R * cos(t))
* exp_I(q.z() * R * sin(t));
},
asin(m_slice_bottom / R), asin(m_slice_top / R));
return radial_part * axial_part;
}
std::string HorizontalCylinder::validate() const
{
std::vector<std::string> errs;
requestGt0(errs, m_radius, "radius");
requestGt0(errs, m_length, "length");
if (m_slice_bottom < -m_radius)
errs.push_back("slice_bottom=" + std::to_string(m_slice_bottom) + "<-R");
if (m_slice_top > m_radius)
errs.push_back("slice_top=" + std::to_string(m_slice_top) + "<R");
if (m_slice_bottom >= m_slice_top)
errs.emplace_back("parameters violate condition bottom<top");
if (!errs.empty())
return jointError(errs);
// TODO improve!
m_shape3D = std::make_unique<DoubleEllipseX>(-m_length / 2, m_radius, m_radius, m_slice_bottom,
m_slice_top, m_length / 2, m_radius, m_radius,
m_slice_bottom, m_slice_top);
m_validated = true;
return "";
}
bool HorizontalCylinder::contains(const R3&) const
{
// TODO: Implement Horizontal cylinder
std::ostringstream ostr;
ostr << "Outer shape Horizontal cylinder not yet implemented for Mesocrystal";
ostr << "\n\nStay tuned!";
throw std::runtime_error(ostr.str());
}
|