File: AutocorrelationModels.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (209 lines) | stat: -rw-r--r-- 7,708 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sample/Interface/AutocorrelationModels.cpp
//! @brief     Implement AutocorrelationModel classes.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2024
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sample/Interface/AutocorrelationModels.h"
#include "Base/Py/PyFmt.h"
#include "Base/Util/Assert.h"
#include <numbers>

using std::numbers::pi;

AutocorrelationModel::AutocorrelationModel(double maxSpatFrequency)
    : m_max_spatial_frequency(maxSpatFrequency)
{
}

std::vector<std::string> AutocorrelationModel::validationErrs() const
{
    std::vector<std::string> errs;
    requestGt0(errs, m_max_spatial_frequency, "maxSpatialFrequency");
    return errs;
}

std::string AutocorrelationModel::pythonArguments() const
{
    return Py::Fmt::printArguments(
        {{m_max_spatial_frequency, AutocorrelationModel::parDefs()[0].unit}});
}

//-------------------------------------------------------------------------------------------------

//! @param sigma: height scale of the roughness in nanometers (usually close to rms)
//! @param hurstParameter: hurst parameter which describes how jagged the interface,
//! dimensionless (0.0, 1.0], where 0.0 gives more spikes, 1.0 more smoothness
//! @param lateralCorrLength: lateral correlation length of the roughness in nanometers
SelfAffineFractalModel::SelfAffineFractalModel(double sigma, double hurst, double lateralCorrLength,
                                               double maxSpatFrequency)
    : AutocorrelationModel(maxSpatFrequency)
    , m_sigma(sigma)
    , m_hurst_parameter(hurst)
    , m_lateral_corr_length(lateralCorrLength)
{
    validateOrThrow();
}

SelfAffineFractalModel* SelfAffineFractalModel::clone() const
{
    return new SelfAffineFractalModel(m_sigma, m_hurst_parameter, m_lateral_corr_length,
                                      m_max_spatial_frequency);
}

std::vector<ParaMeta> SelfAffineFractalModel::parDefs() const
{
    std::vector<ParaMeta> result = {{"Sigma", "nm"}, {"Hurst", ""}, {"CorrLength", "nm"}};
    const auto base_pars = AutocorrelationModel::parDefs();
    result.insert(result.end(), base_pars.begin(), base_pars.end());
    return result;
}

std::string SelfAffineFractalModel::validate() const
{
    std::vector<std::string> errs = AutocorrelationModel::validationErrs();
    requestGe0(errs, m_sigma, "sigma");
    requestIn(errs, m_hurst_parameter, "hurst", 0, 1);
    requestGe0(errs, m_lateral_corr_length, "lateralCorrLength");
    if (!errs.empty())
        return jointError(errs);
    m_validated = true;
    return "";
}

std::string SelfAffineFractalModel::pythonArguments() const
{
    return Py::Fmt::printArguments({{m_sigma, parDefs()[0].unit},
                                    {m_hurst_parameter, parDefs()[1].unit},
                                    {m_lateral_corr_length, parDefs()[2].unit}})
           + ", " + AutocorrelationModel::pythonArguments();
}

//! Power spectral density of the surface roughness is a result of two-dimensional
//! Fourier transform of the correlation function of the roughness profile.
//!
//! Based on Palasantzas, Phys Rev B, 48, 14472 (1993)
double SelfAffineFractalModel::spectralFunction(double spatial_f) const
{
    ASSERT(m_validated);
    if (spatial_f > m_max_spatial_frequency)
        return 0;

    const double Qpar2 = pow(2 * pi * spatial_f, 2);
    const double H = m_hurst_parameter;
    const double clength2 = m_lateral_corr_length * m_lateral_corr_length;
    return 4.0 * pi * H * m_sigma * m_sigma * clength2 * std::pow(1 + Qpar2 * clength2, -1 - H);
}

double SelfAffineFractalModel::rms() const
{
    // integration of spectral function: rms^2 = Integrate[PSD(f) * 2*pi*f, {f, 0, max_frequency}]
    const double H = m_hurst_parameter;
    const double val = 2 * pi * m_lateral_corr_length * m_max_spatial_frequency;
    return m_sigma * std::sqrt(1. - std::pow(1 + val * val, -H));
}

//-------------------------------------------------------------------------------------------------

LinearGrowthModel::LinearGrowthModel(double particle_volume, double damp1, double damp2,
                                     double damp3, double damp4, double maxSpatFrequency)
    : AutocorrelationModel(maxSpatFrequency)
    , m_cluster_volume(particle_volume)
    , m_damp1(damp1)
    , m_damp2(damp2)
    , m_damp3(damp3)
    , m_damp4(damp4)
{
    validateOrThrow();
}

LinearGrowthModel* LinearGrowthModel::clone() const
{
    return new LinearGrowthModel(m_cluster_volume, m_damp1, m_damp2, m_damp3, m_damp4,
                                 m_max_spatial_frequency);
}

std::string LinearGrowthModel::validate() const
{
    std::vector<std::string> errs = AutocorrelationModel::validationErrs();
    requestGe0(errs, m_cluster_volume, "particleVolume");
    requestGe0(errs, m_damp1, "dampingExp1");
    requestGe0(errs, m_damp2, "dampingExp2");
    requestGe0(errs, m_damp3, "dampingExp3");
    requestGe0(errs, m_damp4, "dampingExp4");
    if (!errs.empty())
        return jointError(errs);
    m_validated = true;
    return "";
}

std::vector<ParaMeta> LinearGrowthModel::parDefs() const
{
    std::vector<ParaMeta> result = {{"Particle volume", "nm^3"},
                                    {"Damping 1", ""},
                                    {"Damping 2", "nm"},
                                    {"Damping 3", "nm^2"},
                                    {"Damping 4", "nm^3"}};

    const auto base_pars = AutocorrelationModel::parDefs();
    result.insert(result.end(), base_pars.begin(), base_pars.end());
    return result;
}

std::string LinearGrowthModel::pythonArguments() const
{
    return Py::Fmt::printArguments({{m_cluster_volume, parDefs()[0].unit},
                                    {m_damp1, parDefs()[1].unit},
                                    {m_damp2, parDefs()[2].unit},
                                    {m_damp3, parDefs()[3].unit},
                                    {m_damp4, parDefs()[4].unit}})
           + ", " + AutocorrelationModel::pythonArguments();
    ;
}

double LinearGrowthModel::damping(double spatial_f) const
{
    return m_damp1 * spatial_f + m_damp2 * std::pow(spatial_f, 2) + m_damp3 * std::pow(spatial_f, 3)
           + m_damp4 * std::pow(spatial_f, 4);
}

double LinearGrowthModel::spectralFunction(double spectrum_below, double thickness,
                                           double spatial_f) const
{
    ASSERT(m_validated);
    if (spatial_f > m_max_spatial_frequency)
        return 0;

    if (thickness == 0)
        return spectrum_below;

    double inherited_spectrum = spectrum_below;
    double growth_spectrum = m_cluster_volume * thickness;

    const double damp = damping(spatial_f);
    if (damp > 0) {
        const double exponent = std::exp(-damp * thickness);
        inherited_spectrum = spectrum_below * exponent;
        growth_spectrum = m_cluster_volume * (1. - exponent) / damp;
    }
    return inherited_spectrum + growth_spectrum;
}

double LinearGrowthModel::crosscorrSpectrum(double spectrum_below, double thickness,
                                            double spatial_f) const
{
    ASSERT(m_validated);
    const double damp = damping(spatial_f);
    if (damp == 0 || thickness == 0)
        return spectrum_below;

    return spectrum_below * std::exp(-damp * thickness);
}