1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/Interface/CrosscorrelationModels.cpp
//! @brief Implement CrossCorrModel classes.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2024
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/Interface/CrosscorrelationModels.h"
#include "Base/Py/PyFmt.h"
#include "Base/Util/Assert.h"
#include <cmath>
#include <numbers>
using std::numbers::pi;
SpatialFrequencyCrosscorrelation::SpatialFrequencyCrosscorrelation(double base_crosscorr_depth,
double base_frequency,
double power)
: m_base_crosscorr_depth(base_crosscorr_depth)
, m_base_spatial_frequency(base_frequency)
, m_power(power)
{
validateOrThrow();
}
SpatialFrequencyCrosscorrelation* SpatialFrequencyCrosscorrelation::clone() const
{
return new SpatialFrequencyCrosscorrelation(m_base_crosscorr_depth, m_base_spatial_frequency,
m_power);
}
std::string SpatialFrequencyCrosscorrelation::pythonArguments() const
{
return Py::Fmt::printArguments({{m_base_crosscorr_depth, parDefs()[0].unit},
{m_base_spatial_frequency, parDefs()[1].unit},
{m_power, parDefs()[2].unit}});
}
std::string SpatialFrequencyCrosscorrelation::validate() const
{
std::vector<std::string> errs;
requestGe0(errs, m_base_crosscorr_depth, parDefs()[0].name);
requestGt0(errs, m_base_spatial_frequency, parDefs()[1].name);
requestGe0(errs, m_power, parDefs()[2].name);
if (!errs.empty())
return jointError(errs);
m_validated = true;
return "";
}
double SpatialFrequencyCrosscorrelation::crosscorrSpectrum(double spectrum_up, double spectrum_low,
double thickness, double spatial_f) const
{
ASSERT(thickness >= 0);
if (m_base_crosscorr_depth == 0 || spectrum_up == 0 || spectrum_low == 0)
return 0;
const double frequency_factor = std::pow(spatial_f / m_base_spatial_frequency, m_power);
const double base_cross_spectrum = std::sqrt(spectrum_up * spectrum_low);
return base_cross_spectrum * std::exp(-thickness / m_base_crosscorr_depth * frequency_factor);
}
//-------------------------------------------------------------------------------------------------
CommonDepthCrosscorrelation::CommonDepthCrosscorrelation(double cross_corr_depth)
: SpatialFrequencyCrosscorrelation(cross_corr_depth, 1, 0)
{
}
CommonDepthCrosscorrelation* CommonDepthCrosscorrelation::clone() const
{
return new CommonDepthCrosscorrelation(m_base_crosscorr_depth);
}
std::string CommonDepthCrosscorrelation::pythonArguments() const
{
return Py::Fmt::printArguments({{m_base_crosscorr_depth, parDefs()[0].unit}});
}
|