File: RoughnessMap.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (249 lines) | stat: -rw-r--r-- 8,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sample/Interface/RoughnessMap.cpp
//! @brief     Implements RoughnessMap class.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2024
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sample/Interface/RoughnessMap.h"
#include "Base/Util/Assert.h"
#include "Sample/Interface/Roughness.h"
#include "Sample/Multilayer/Layer.h"
#include <algorithm>
#include <numbers>

using std::numbers::pi;

namespace {

bool converged(const double2d_t& h_old, const double2d_t& h_new, double threshold)
{
    ASSERT(h_old.size() == h_new.size());
    ASSERT(h_old[0].size() == h_new[0].size());

    double sum_diff = 0;
    double sum_base = 0;
    int n = h_old.size() * h_old[0].size();

    for (size_t j = 0; j < h_old.size(); j++)
        for (size_t i = 0; i < h_old[0].size(); i++) {
            sum_diff += pow(h_old[j][i] - h_new[j][i], 2) / n;
            sum_base += pow(h_old[j][i], 2) / n;
        }

    return sum_diff < threshold * sum_base;
}

#ifdef BORNAGAIN_PYTHON

Arrayf64Wrapper arrayExport(const std::vector<std::size_t>& dimensions,
                            const std::vector<double>& flatData, const bool owndata)
{
    const std::size_t n_dims = dimensions.size();
    ASSERT(n_dims <= 2);

    return {flatData.size(), n_dims, dimensions.data(), flatData.data(), owndata};
}

#endif // BORNAGAIN_PYTHON

} // namespace

RoughnessMap::RoughnessMap(size_t x_points, size_t y_points, double Lx, double Ly,
                           const Sample& sample, int i_layer, int seed)
    : m_x_points(x_points)
    , m_y_points(y_points)
    , m_lx(Lx)
    , m_ly(Ly)
    , m_sample(sample)
    , m_i_layer(i_layer)
    , m_gen(seed < 0 ? m_rd() : seed)
{
    if (x_points == 0)
        throw std::runtime_error("Number of points along X must be >=1");
    if (y_points == 0)
        throw std::runtime_error("Number of points along Y must be >=1");
    if (Lx <= 0)
        throw std::runtime_error("Sample X length must be > 0");
    if (Ly <= 0)
        throw std::runtime_error("Sample Y length must be > 0");
}

double2d_t RoughnessMap::generateMap()
{
    createMap();
    return m_rough_map;
}

double2d_t RoughnessMap::mapFromHeights() const
{
    const size_t z_steps = 3999;
    const TransientModel* transient = m_sample.layer(m_i_layer)->roughness()->transient();
    const double rms = m_sample.roughnessRMS(m_i_layer);
    const double sigma_factor = transient->sigmaRange();
    const double z_limit = rms * sigma_factor;
    const double step = 2 * z_limit / (z_steps - 1);

    // create mesh of values
    std::vector<double> z_points(z_steps);
    for (size_t i = 0; i < z_steps; i++)
        z_points[i] = -z_limit + step * i;

    // fill mesh with weights
    std::vector<double> z_weights(z_steps);
    for (size_t i = 0; i < z_steps; i++)
        z_weights[i] = transient->distribution(z_points[i], rms);

    // fill map with random values
    std::discrete_distribution<int> d(z_weights.begin(), z_weights.end());
    double2d_t result(m_y_points, std::vector<double>(m_x_points));
    for (int j = 0; j < m_y_points; j++)
        for (int i = 0; i < m_x_points; i++)
            result[j][i] = z_points[d(m_gen)];

    return result;
}

double2d_t RoughnessMap::mapFromSpectrum() const
{
    const double fft_factor = m_x_points * m_y_points / std::sqrt(m_lx * m_ly);
    const double dfx = 1. / m_lx;
    const double dfy = 1. / m_ly;

    const int N = m_x_points / 2 + 1;
    const int M = m_y_points / 2 + 1;

    std::vector<double> fx(N);
    for (int i = 0; i < N; i++)
        fx[i] = i * dfx;

    std::vector<double> fy(M);
    for (int j = 0; j < M; j++)
        fy[j] = j * dfy;

    double2d_t psd_mag(m_y_points, std::vector<double>(N));
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < M; j++)
            psd_mag[j][i] =
                std::sqrt(m_sample.roughnessSpectrum(std::hypot(fx[i], fy[j]), m_i_layer));
        for (int j = M; j < m_y_points; j++)
            psd_mag[j][i] = psd_mag[m_y_points - j][i];
    }
    psd_mag[0][0] = 0; // average height (amplitude at zero frequency) is null

    std::uniform_real_distribution<double> d(-pi, pi);
    double2d_t phase(m_y_points, std::vector<double>(N));

    // main axes
    // x axis
    for (int pos = 1; pos < (N - 1); pos++)
        phase[0][pos] = d(m_gen);

    // y axis
    for (int pos = 1; pos < (M - 1); pos++) {
        phase[pos][0] = d(m_gen);
        phase[m_y_points - pos][0] = -phase[pos][0];
    }

    // inner area
    for (int pos_j = 1; pos_j < m_y_points; pos_j++) {
        int sym_pos_j = m_y_points - pos_j;
        for (int pos_i = 1; pos_i < N; pos_i++) {
            int sym_pos_i = m_x_points - pos_i;
            if (pos_i < sym_pos_i || pos_j < sym_pos_j)
                phase[pos_j][pos_i] = d(m_gen);
            else
                phase[pos_j][pos_i] = +phase[sym_pos_j][pos_i];
        }
    }
    complex2d_t spectrum(m_y_points, std::vector<complex_t>(N));
    for (int j = 0; j < m_y_points; j++)
        for (int i = 0; i < N; i++)
            spectrum[j][i] = psd_mag[j][i] * std::exp(I * phase[j][i]) * fft_factor;

    return m_ft.irfft(spectrum, m_x_points);
}

double2d_t RoughnessMap::applySpectrumToHeights(const double2d_t& h_map,
                                                const double2d_t& s_map) const
{
    // get spectrum
    auto h_fft = m_ft.rfft(h_map);
    auto s_fft = m_ft.rfft(s_map);

    // rescale components
    for (size_t j = 0; j < h_fft.size(); j++)
        for (size_t i = 0; i < h_fft[0].size(); i++)
            if (std::abs(h_fft[j][i]) != 0)
                h_fft[j][i] *= std::abs(s_fft[j][i] / h_fft[j][i]);

    return m_ft.irfft(h_fft, h_map[0].size());
}

double2d_t RoughnessMap::applyHeightsToSpectrum(const double2d_t& h_map,
                                                const double2d_t& s_map) const
{
    // flatten spectral map
    auto s_map_flat = FieldUtil::flatten(s_map);

    // sort and remember the original positions
    std::vector<std::pair<double, size_t>> s_map_indexed(s_map_flat.size());
    for (size_t i = 0; i < s_map_flat.size(); i++)
        s_map_indexed[i] = std::make_pair(s_map_flat[i], i);

    std::sort(s_map_indexed.begin(), s_map_indexed.end());

    // replace heights of spectral map
    auto h_map_flat = FieldUtil::flatten(h_map);
    std::sort(h_map_flat.begin(), h_map_flat.end());

    for (size_t i = 0; i < s_map_flat.size(); i++)
        s_map_flat[s_map_indexed[i].second] = h_map_flat[i];

    return FieldUtil::reshapeTo2D(s_map_flat, s_map.size());
}

void RoughnessMap::createMap()
{
    if (m_sample.roughnessRMS(m_i_layer) < 1e-10) {
        m_rough_map = double2d_t(m_y_points, std::vector<double>(m_x_points));
        return;
    }

    double2d_t h_map = mapFromHeights();
    double2d_t s_map = mapFromSpectrum();

    for (int i = 0;; ++i) {
        // number of iterations is limited even if no convergence
        ASSERT(i < 100);
        double2d_t h_map_old = h_map;
        s_map = applySpectrumToHeights(h_map, s_map);
        h_map = applyHeightsToSpectrum(h_map, s_map);

        // adjust tolerance for proper speed/accuracy
        if (::converged(h_map_old, h_map, 1e-4))
            break;
    }

    // 's_map' has "perfect" original spectrum and tolerable height statistics.
    // 'h_map' has original height statistics but noisy spectrum.
    m_rough_map = s_map;
}

#ifdef BORNAGAIN_PYTHON

Arrayf64Wrapper RoughnessMap::generate()
{
    createMap();
    std::vector<std::size_t> dimensions = {m_rough_map.size(), m_rough_map[0].size()};
    return ::arrayExport(dimensions, FieldUtil::flatten(m_rough_map), /* owndata= */ true);
}

#endif // BORNAGAIN_PYTHON