1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/Interface/RoughnessMap.cpp
//! @brief Implements RoughnessMap class.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2024
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/Interface/RoughnessMap.h"
#include "Base/Util/Assert.h"
#include "Sample/Interface/Roughness.h"
#include "Sample/Multilayer/Layer.h"
#include <algorithm>
#include <numbers>
using std::numbers::pi;
namespace {
bool converged(const double2d_t& h_old, const double2d_t& h_new, double threshold)
{
ASSERT(h_old.size() == h_new.size());
ASSERT(h_old[0].size() == h_new[0].size());
double sum_diff = 0;
double sum_base = 0;
int n = h_old.size() * h_old[0].size();
for (size_t j = 0; j < h_old.size(); j++)
for (size_t i = 0; i < h_old[0].size(); i++) {
sum_diff += pow(h_old[j][i] - h_new[j][i], 2) / n;
sum_base += pow(h_old[j][i], 2) / n;
}
return sum_diff < threshold * sum_base;
}
#ifdef BORNAGAIN_PYTHON
Arrayf64Wrapper arrayExport(const std::vector<std::size_t>& dimensions,
const std::vector<double>& flatData, const bool owndata)
{
const std::size_t n_dims = dimensions.size();
ASSERT(n_dims <= 2);
return {flatData.size(), n_dims, dimensions.data(), flatData.data(), owndata};
}
#endif // BORNAGAIN_PYTHON
} // namespace
RoughnessMap::RoughnessMap(size_t x_points, size_t y_points, double Lx, double Ly,
const Sample& sample, int i_layer, int seed)
: m_x_points(x_points)
, m_y_points(y_points)
, m_lx(Lx)
, m_ly(Ly)
, m_sample(sample)
, m_i_layer(i_layer)
, m_gen(seed < 0 ? m_rd() : seed)
{
if (x_points == 0)
throw std::runtime_error("Number of points along X must be >=1");
if (y_points == 0)
throw std::runtime_error("Number of points along Y must be >=1");
if (Lx <= 0)
throw std::runtime_error("Sample X length must be > 0");
if (Ly <= 0)
throw std::runtime_error("Sample Y length must be > 0");
}
double2d_t RoughnessMap::generateMap()
{
createMap();
return m_rough_map;
}
double2d_t RoughnessMap::mapFromHeights() const
{
const size_t z_steps = 3999;
const TransientModel* transient = m_sample.layer(m_i_layer)->roughness()->transient();
const double rms = m_sample.roughnessRMS(m_i_layer);
const double sigma_factor = transient->sigmaRange();
const double z_limit = rms * sigma_factor;
const double step = 2 * z_limit / (z_steps - 1);
// create mesh of values
std::vector<double> z_points(z_steps);
for (size_t i = 0; i < z_steps; i++)
z_points[i] = -z_limit + step * i;
// fill mesh with weights
std::vector<double> z_weights(z_steps);
for (size_t i = 0; i < z_steps; i++)
z_weights[i] = transient->distribution(z_points[i], rms);
// fill map with random values
std::discrete_distribution<int> d(z_weights.begin(), z_weights.end());
double2d_t result(m_y_points, std::vector<double>(m_x_points));
for (int j = 0; j < m_y_points; j++)
for (int i = 0; i < m_x_points; i++)
result[j][i] = z_points[d(m_gen)];
return result;
}
double2d_t RoughnessMap::mapFromSpectrum() const
{
const double fft_factor = m_x_points * m_y_points / std::sqrt(m_lx * m_ly);
const double dfx = 1. / m_lx;
const double dfy = 1. / m_ly;
const int N = m_x_points / 2 + 1;
const int M = m_y_points / 2 + 1;
std::vector<double> fx(N);
for (int i = 0; i < N; i++)
fx[i] = i * dfx;
std::vector<double> fy(M);
for (int j = 0; j < M; j++)
fy[j] = j * dfy;
double2d_t psd_mag(m_y_points, std::vector<double>(N));
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++)
psd_mag[j][i] =
std::sqrt(m_sample.roughnessSpectrum(std::hypot(fx[i], fy[j]), m_i_layer));
for (int j = M; j < m_y_points; j++)
psd_mag[j][i] = psd_mag[m_y_points - j][i];
}
psd_mag[0][0] = 0; // average height (amplitude at zero frequency) is null
std::uniform_real_distribution<double> d(-pi, pi);
double2d_t phase(m_y_points, std::vector<double>(N));
// main axes
// x axis
for (int pos = 1; pos < (N - 1); pos++)
phase[0][pos] = d(m_gen);
// y axis
for (int pos = 1; pos < (M - 1); pos++) {
phase[pos][0] = d(m_gen);
phase[m_y_points - pos][0] = -phase[pos][0];
}
// inner area
for (int pos_j = 1; pos_j < m_y_points; pos_j++) {
int sym_pos_j = m_y_points - pos_j;
for (int pos_i = 1; pos_i < N; pos_i++) {
int sym_pos_i = m_x_points - pos_i;
if (pos_i < sym_pos_i || pos_j < sym_pos_j)
phase[pos_j][pos_i] = d(m_gen);
else
phase[pos_j][pos_i] = +phase[sym_pos_j][pos_i];
}
}
complex2d_t spectrum(m_y_points, std::vector<complex_t>(N));
for (int j = 0; j < m_y_points; j++)
for (int i = 0; i < N; i++)
spectrum[j][i] = psd_mag[j][i] * std::exp(I * phase[j][i]) * fft_factor;
return m_ft.irfft(spectrum, m_x_points);
}
double2d_t RoughnessMap::applySpectrumToHeights(const double2d_t& h_map,
const double2d_t& s_map) const
{
// get spectrum
auto h_fft = m_ft.rfft(h_map);
auto s_fft = m_ft.rfft(s_map);
// rescale components
for (size_t j = 0; j < h_fft.size(); j++)
for (size_t i = 0; i < h_fft[0].size(); i++)
if (std::abs(h_fft[j][i]) != 0)
h_fft[j][i] *= std::abs(s_fft[j][i] / h_fft[j][i]);
return m_ft.irfft(h_fft, h_map[0].size());
}
double2d_t RoughnessMap::applyHeightsToSpectrum(const double2d_t& h_map,
const double2d_t& s_map) const
{
// flatten spectral map
auto s_map_flat = FieldUtil::flatten(s_map);
// sort and remember the original positions
std::vector<std::pair<double, size_t>> s_map_indexed(s_map_flat.size());
for (size_t i = 0; i < s_map_flat.size(); i++)
s_map_indexed[i] = std::make_pair(s_map_flat[i], i);
std::sort(s_map_indexed.begin(), s_map_indexed.end());
// replace heights of spectral map
auto h_map_flat = FieldUtil::flatten(h_map);
std::sort(h_map_flat.begin(), h_map_flat.end());
for (size_t i = 0; i < s_map_flat.size(); i++)
s_map_flat[s_map_indexed[i].second] = h_map_flat[i];
return FieldUtil::reshapeTo2D(s_map_flat, s_map.size());
}
void RoughnessMap::createMap()
{
if (m_sample.roughnessRMS(m_i_layer) < 1e-10) {
m_rough_map = double2d_t(m_y_points, std::vector<double>(m_x_points));
return;
}
double2d_t h_map = mapFromHeights();
double2d_t s_map = mapFromSpectrum();
for (int i = 0;; ++i) {
// number of iterations is limited even if no convergence
ASSERT(i < 100);
double2d_t h_map_old = h_map;
s_map = applySpectrumToHeights(h_map, s_map);
h_map = applyHeightsToSpectrum(h_map, s_map);
// adjust tolerance for proper speed/accuracy
if (::converged(h_map_old, h_map, 1e-4))
break;
}
// 's_map' has "perfect" original spectrum and tolerable height statistics.
// 'h_map' has original height statistics but noisy spectrum.
m_rough_map = s_map;
}
#ifdef BORNAGAIN_PYTHON
Arrayf64Wrapper RoughnessMap::generate()
{
createMap();
std::vector<std::size_t> dimensions = {m_rough_map.size(), m_rough_map[0].size()};
return ::arrayExport(dimensions, FieldUtil::flatten(m_rough_map), /* owndata= */ true);
}
#endif // BORNAGAIN_PYTHON
|