File: Material.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (149 lines) | stat: -rw-r--r-- 3,982 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sample/Material/Material.cpp
//! @brief     Implements and implements class Material.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sample/Material/Material.h"
#include "Base/Spin/SpinMatrix.h"
#include "Base/Util/Assert.h"
#include "Base/Vector/WavevectorInfo.h"
#include <cmath>
#include <sstream>
#include <stdexcept>
#include <typeinfo>

Material::Material(std::unique_ptr<IMaterialImpl>&& material_impl)
    : m_material_impl(std::move(material_impl))
{
}

Material::Material(const Material& material)
{
    ASSERT(!material.isEmpty());
    m_material_impl.reset(material.m_material_impl->clone());
}

Material& Material::operator=(const Material& other)
{
    if (this == &other)
        return *this;
    ASSERT(!other.isEmpty());
    m_material_impl.reset(other.m_material_impl->clone());
    return *this;
}

Material Material::inverted() const
{
    std::unique_ptr<IMaterialImpl> material_impl(m_material_impl->inverted());
    return {std::move(material_impl)};
}

complex_t Material::refractiveIndex(double wavelength) const
{
    return m_material_impl->refractiveIndex(wavelength);
}

complex_t Material::refractiveIndex2(double wavelength) const
{
    return m_material_impl->refractiveIndex2(wavelength);
}

bool Material::isScalarMaterial() const
{
    return m_material_impl->isScalarMaterial();
}

bool Material::isMagneticMaterial() const
{
    return m_material_impl->isMagneticMaterial();
}

std::string Material::materialName() const
{
    return m_material_impl->matName();
}

MATERIAL_TYPES Material::typeID() const
{
    return m_material_impl->typeID();
}

void Material::checkRefractiveIndex(double wavelength) const
{
    const complex_t n = refractiveIndex(wavelength);
    if (n.real() < 0.9 || n.real() > 1.1) {
        std::stringstream msg;
        msg << "Refractive index " << n << " at wavelength " << wavelength
            << " is too far from 1. Invalid material data?";
        throw std::runtime_error(msg.str());
    }
}

R3 Material::magnetization() const
{
    return m_material_impl->magnetization();
}

complex_t Material::refractiveIndex_or_SLD() const
{
    return m_material_impl->refractiveIndex_or_SLD();
}

bool Material::isDefaultMaterial() const
{
    return refractiveIndex_or_SLD() == complex_t() && isScalarMaterial();
}

bool Material::isEmpty() const
{
    return !m_material_impl;
}

complex_t Material::scalarSubtrSLD(const WavevectorInfo& wavevectors) const
{
    return m_material_impl->scalarSubtrSLD(wavevectors.vacuumLambda());
}

SpinMatrix Material::polarizedSubtrSLD(const WavevectorInfo& wavevectors) const
{
    return m_material_impl->polarizedSubtrSLD(wavevectors);
}

Material Material::rotatedMaterial(const RotMatrix& transform) const // TODO param:=rotation
{
    std::unique_ptr<IMaterialImpl> material_impl(m_material_impl->rotatedMaterial(transform));
    return {std::move(material_impl)};
}

std::ostream& operator<<(std::ostream& ostr, const Material& m)
{
    ostr << m.m_material_impl->print();
    return ostr;
}

bool operator==(const Material& left, const Material& right)
{
    if (left.materialName() != right.materialName())
        return false;
    if (left.magnetization() != right.magnetization())
        return false;
    if (left.refractiveIndex_or_SLD() != right.refractiveIndex_or_SLD())
        return false;
    if (left.typeID() != right.typeID())
        return false;
    return true;
}

bool operator!=(const Material& left, const Material& right)
{
    return !(left == right);
}