File: MaterialUtil.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (160 lines) | stat: -rw-r--r-- 5,901 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sample/Material/MaterialUtil.cpp
//! @brief     Implements functions in namespace MaterialUtil.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sample/Material/MaterialUtil.h"
#include "Base/Const/PhysicalConstants.h"
#include "Base/Spin/SpinMatrix.h"
#include "Base/Util/Assert.h"
#include "Sample/Material/IMaterialImpl.h"
#include "Sample/Material/MaterialFactoryFuncs.h"

using PhysConsts::g_factor_n;
using PhysConsts::h_bar;
using PhysConsts::m_n;
using PhysConsts::mu_N;

// The factor 1e-18 is here to have unit: 1/T*nm^-2
constexpr double magnetic_prefactor = (m_n * g_factor_n * mu_N / h_bar / h_bar) * 1e-18;

namespace {

// Pauli matrices
const SpinMatrix Pauli_X(0, 1, 1, 0);
const SpinMatrix Pauli_Y(0, -I, I, 0);
const SpinMatrix Pauli_Z(1, 0, 0, -1);

} // namespace


template <typename T>
SpinMatrix MaterialUtil::MagnetizationCorrection(complex_t unit_factor, double magnetic_factor,
                                                 const Vec3<T>& polarization)
{
    SpinMatrix result = unit_factor * SpinMatrix::One()
                        + magnetic_factor
                              * (Pauli_X * polarization.x() + Pauli_Y * polarization.y()
                                 + Pauli_Z * polarization.z());
    return result;
}

// Prompt compilation for real and complex vectors:
template SpinMatrix MaterialUtil::MagnetizationCorrection(complex_t unit_factor,
                                                          double magnetic_factor,
                                                          const R3& polarization);
template SpinMatrix MaterialUtil::MagnetizationCorrection(complex_t unit_factor,
                                                          double magnetic_factor,
                                                          const C3& polarization);


complex_t MaterialUtil::ScalarReducedPotential(complex_t n, const R3& k, double n_ref)
{
    return n * n - n_ref * n_ref * R3Util::sin2Theta(k);
}

SpinMatrix MaterialUtil::PolarizedReducedPotential(complex_t n, const R3& b_field, const R3& k,
                                                   double n_ref)
{
    double factor = magnetic_prefactor / k.mag2();
    complex_t unit_factor = ScalarReducedPotential(n, k, n_ref);
    return MagnetizationCorrection(unit_factor, factor, b_field);
}

MATERIAL_TYPES MaterialUtil::checkMaterialTypes(const std::vector<const Material*>& materials)
{
    MATERIAL_TYPES result = MATERIAL_TYPES::RefractiveMaterial;
    bool isDefault = true;
    for (const Material* mat : materials) {
        if (isDefault) {
            result = mat->typeID();
            isDefault = mat->isDefaultMaterial();
            continue;
        }
        if (mat->typeID() != result && !mat->isDefaultMaterial())
            return MATERIAL_TYPES::InvalidMaterialType;
    }
    return result;
}

Material MaterialUtil::averagedMaterial(const std::string& name, const std::vector<double>& weights,
                                        const std::vector<Material>& materials)
{
    const size_t N = materials.size();
    ASSERT(weights.size() == N);
    ASSERT(N > 0);

    double totalWeight = 0;
    for (double w : weights) {
        ASSERT(w >= 0);
        totalWeight += w;
    }
    ASSERT(totalWeight > 0);

    R3 avgeMagn;
    complex_t avgeData{0., 0.};
    const auto type = materials[0].typeID();

    for (size_t i = 0; i < N; ++i) {
        double w = weights[i] / totalWeight;
        const Material& mat = materials[i];
        if (mat.typeID() != type)
            throw std::runtime_error(
                "Invalid mixture of different material definitions (refractive index vs SLD)");
        avgeMagn += w * mat.magnetization();
        if (type == MATERIAL_TYPES::RefractiveMaterial) {
            const complex_t mdc = std::conj(mat.refractiveIndex_or_SLD());
            avgeData += w * (mdc * mdc - 2.0 * mdc);
        } else if (type == MATERIAL_TYPES::MaterialBySLD) {
            avgeData += w * mat.refractiveIndex_or_SLD();
        } else
            ASSERT_NEVER;
    }

    if (type == MATERIAL_TYPES::RefractiveMaterial) {
        avgeData = std::conj(1.0 - std::sqrt(1.0 + avgeData));
        return RefractiveMaterial(name, avgeData.real(), avgeData.imag(), avgeMagn);
    }
    if (type == MATERIAL_TYPES::MaterialBySLD)
        return MaterialBySLD(name, avgeData.real(), avgeData.imag(), avgeMagn);
    ASSERT_NEVER;
}

// Tested by Tests/Unit/Sim/Sample/MaterialTest.cpp

Material MaterialUtil::averagedMaterial(const Material& base_mat, const Admixtures& admixtures)
{
    double totalAdmixedFraction = 0;
    for (const OneAdmixture& admix : admixtures) {
        ASSERT(admix.fraction >= 0);
        if (admix.fraction > 1)
            throw std::runtime_error("Volume fraction of one admixture component is more than 1");
        totalAdmixedFraction += admix.fraction;
    }
    if (totalAdmixedFraction > 1)
        throw std::runtime_error("Volume fractions of sample components add to more than 1");

    std::vector<double> weights;
    std::vector<Material> materials;

    weights.push_back(1 - totalAdmixedFraction);
    materials.push_back(base_mat);

    for (const OneAdmixture& admix : admixtures) {
        weights.push_back(admix.fraction);
        materials.push_back(admix.material);
    }

    const std::string avge_name = base_mat.materialName() + "_avg";

    return averagedMaterial(avge_name, weights, materials);
}