File: Sample.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (244 lines) | stat: -rw-r--r-- 7,421 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sample/Multilayer/Sample.cpp
//! @brief     Implements class Sample.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sample/Multilayer/Sample.h"
#include "Base/Math/IntegratorGK.h"
#include "Base/Util/Assert.h"
#include "Base/Util/StringUtil.h"
#include "Sample/Aggregate/ParticleLayout.h"
#include "Sample/Interface/Roughness.h"
#include "Sample/Material/MaterialUtil.h"
#include "Sample/Multilayer/LayerStack.h"
#include <numbers>

using std::numbers::pi;

namespace {

const AutocorrelationModel* autocorrOf(const Layer* layer)
{
    return layer->roughness()->autocorrelationModel();
}

} // namespace


Sample::Sample()
    : m_outer_stack(new LayerStack)
{
    checkAndProcess();
}

Sample::~Sample() = default;

Sample* Sample::clone() const
{
    auto* result = new Sample;
    result->setExternalField(externalField());
    result->setOuterStack(*m_outer_stack);
    return result;
}

void Sample::checkMaterials(double wavelength) const
{
    m_outer_stack->checkMaterials(wavelength);
}

void Sample::setOuterStack(const LayerStack& outer_stack)
{
    m_outer_stack.reset(outer_stack.clone());
    checkAndProcess();
}

void Sample::addLayer(const Layer& layer)
{
    ASSERT(m_validated);
    if (!numberOfLayers()) // adding the top layer
        if (layer.thickness() != 0.0)
            throw std::runtime_error("Invalid top layer; to indicate that it is semiinfinite,"
                                     " it must have a nominal thickness of 0");
    m_outer_stack->addLayer(layer);
    checkAndProcess();
}

void Sample::addStack(const LayerStack& substack)
{
    ASSERT(m_validated);
    m_outer_stack->addStack(substack);
    checkAndProcess();
}

double Sample::maxCutoffSpatialFrequencyAt(size_t i_layer) const
{
    ASSERT(m_validated);
    double result = 0;
    for (size_t i = i_layer; i < numberOfLayers(); i++) {
        const auto autocorr = unwrappedLayers.at(i)->roughness()->autocorrelationModel();
        result = std::max(autocorr->maxSpatialFrequency(), result);
    }
    return result;
}

const Layer* Sample::layer(size_t i_layer) const
{
    ASSERT(m_validated);
    return unwrappedLayers.at(i_layer);
}

void Sample::setExternalField(const R3& ext_field)
{
    m_ext_field = ext_field;
}

double Sample::roughnessSpectrum(double spatial_f, int i_layer) const
{
    ASSERT(m_validated);
    int size = numberOfLayers();
    const AutocorrelationModel* autocorr = autocorrOf(layer(i_layer));

    if (const auto k_corr = dynamic_cast<const SelfAffineFractalModel*>(autocorr))
        return k_corr->spectralFunction(spatial_f);

    if (dynamic_cast<const LinearGrowthModel*>(autocorr)) {
        if (i_layer == size - 1)
            ASSERT_NEVER;

        int j = i_layer + 1;
        for (; j < size; j++) {
            if (dynamic_cast<const SelfAffineFractalModel*>(autocorrOf(layer(j))))
                break;
        }
        ASSERT(j < size);
        const auto base_k_corr = dynamic_cast<const SelfAffineFractalModel*>(autocorrOf(layer(j)));
        double spectrum_below = base_k_corr->spectralFunction(spatial_f);
        double current_spectrum = spectrum_below;

        // all layers between i and j have linear growth model
        for (int k = j - 1; k >= i_layer; k--) {
            const auto lin_growth = dynamic_cast<const LinearGrowthModel*>(autocorrOf(layer(k)));
            const double thickness = unwrappedLayers.at(k)->thickness();
            current_spectrum = lin_growth->spectralFunction(spectrum_below, thickness, spatial_f);
            spectrum_below = current_spectrum;
        }
        return current_spectrum;
    }
    ASSERT_NEVER;
}

double Sample::roughnessRMS(size_t i_layer) const
{
    ASSERT(i_layer < numberOfLayers());
    const auto autocorr = autocorrOf(layer(i_layer));

    if (auto* k_corr = dynamic_cast<const SelfAffineFractalModel*>(autocorr)) {
        return k_corr->rms();
    } else if (dynamic_cast<const LinearGrowthModel*>(autocorr)) {
        const double maxSpatialFrequency = maxCutoffSpatialFrequencyAt(i_layer);
        return std::sqrt((2 * pi)
                         * RealIntegrator().integrate(
                             [this, i_layer](double spatial_f) -> double {
                                 return spatial_f * roughnessSpectrum(spatial_f, i_layer);
                             },
                             0, maxSpatialFrequency));
    }
    ASSERT_NEVER;
}

std::vector<const INode*> Sample::nodeChildren() const
{
    // skip outer stack in children list to hide it from exporting to python script
    return std::vector<const INode*>() << m_outer_stack->nodeChildren();
}

double Sample::hig(size_t i) const
{
    ASSERT(m_validated);
    ASSERT(i >= 1 && i < numberOfLayers());
    return ZInterfaces.at(i - 1);
}

double Sample::low(size_t i) const
{
    ASSERT(m_validated);
    ASSERT(i < numberOfLayers() - 1);
    return ZInterfaces.at(i);
}

size_t Sample::numberOfLayers() const
{
    ASSERT(m_validated);
    return unwrappedLayers.size();
}

std::string Sample::validate() const
{
    std::vector<std::string> errs;
    if (MaterialUtil::checkMaterialTypes(containedMaterials())
        == MATERIAL_TYPES::InvalidMaterialType)
        errs.push_back("Sample contains incompatible material definitions");

    std::string err = m_outer_stack->validate();
    if (!err.empty())
        errs.push_back("{ sample : " + err + " }");

    if (!errs.empty())
        return "[ " + Base::String::join(errs, ", ") + " ]";

    m_validated = true;
    return "";
}

void Sample::checkAndProcess() const
{
    // call after any change in layered structure

    m_validated = false;
    validateOrThrow();

    // unwrap layers and precompute interface coordinates
    unwrappedLayers = m_outer_stack->unwrapped();
    size_t N = unwrappedLayers.size();
    if (N >= 1)
        ZInterfaces.resize(N - 1);
    if (N >= 2) {
        ZInterfaces[0] = 0;
        for (size_t i = 1; i < N - 1; ++i)
            ZInterfaces.at(i) = ZInterfaces.at(i - 1) - unwrappedLayers.at(i)->thickness();
    }
}

std::string Sample::validateAmbientSubstrate() const
{
    const std::string err = validate();
    if (!err.empty())
        return err;

    // Non-empty stack cannot be the first or last component.
    // There should be ambient/substrate layer.
    auto outer_components = m_outer_stack->components();
    for (int i = outer_components.size() - 1; i >= 0; i--)
        if (const auto* stack = dynamic_cast<const LayerStack*>(outer_components[i]))
            if (stack->unwrapped().empty())
                outer_components.erase(outer_components.begin() + i);

    if (!outer_components.empty()) {
        if (dynamic_cast<const LayerStack*>(outer_components.front()))
            return "Sample: ambient layer is missing";

        if (dynamic_cast<const LayerStack*>(outer_components.back()))
            return "Sample: substrate layer is missing";
    }
    m_validated = true;
    return "";
}