1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/Particle/IFormfactor.h
//! @brief Defines interface IDecoratableBorn.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#ifndef BORNAGAIN_SAMPLE_PARTICLE_IFORMFACTOR_H
#define BORNAGAIN_SAMPLE_PARTICLE_IFORMFACTOR_H
#include "Base/Spin/SpinMatrix.h" // not forward declared because of SWIG
#include "Base/Spin/Spinor.h" // not forward declared because of SWIG
#include "Sample/Scattering/ISampleNode.h"
#include <heinz/Complex.h>
#include <heinz/Vectors3D.h>
class IRotation;
class IShape3D;
class Span;
class WavevectorInfo;
//! Abstract base class for Born form factors.
//!
//! In contrast to the generic IReParticle, a Born form factor does not depend
//! on the incoming and outgoing wave vectors ki and kf, except through their
//! difference, the scattering vector q=ki-kf.
class IFormfactor : public ISampleNode {
public:
IFormfactor();
IFormfactor(const std::vector<double>& PValues);
~IFormfactor() override;
#ifndef SWIG
IFormfactor* clone() const override = 0;
//! Creates the Python constructor of this class (or derived classes)
std::string pythonConstructor() const;
#endif // SWIG
virtual double volume() const;
//! Returns the (approximate in some cases) radial size of the particle of this
//! form factor's shape. This is used for SSCA calculations
virtual double radialExtension() const = 0;
virtual Span spanZ(const IRotation* rotation) const;
//! Default implementation only allows rotations along z-axis
virtual bool canSliceAnalytically(const IRotation* rot) const;
complex_t theFF(const WavevectorInfo& wavevectors) const;
SpinMatrix thePolFF(const WavevectorInfo& wavevectors) const;
//! Returns scattering amplitude for complex scattering wavevector q=k_i-k_f in case
//! of matrix interactions. Default implementation calls formfactor(q) and
//! multiplies with the unit matrix.
SpinMatrix formfactor_pol(C3 q) const;
virtual complex_t formfactor(C3 q) const = 0;
//! Checks whether the point of space lies inside the geometric figure ff.
virtual bool contains(const R3& position) const = 0;
//! Checks for exact equality of any two formfactors.
bool isEqualTo(const IFormfactor* other) const;
protected:
//! IShape3D object, used to retrieve vertices (which may be approximate in the case
//! of round shapes). For soft particles, this will be a hard mean shape.
mutable std::unique_ptr<IShape3D> m_shape3D;
};
#endif // BORNAGAIN_SAMPLE_PARTICLE_IFORMFACTOR_H
|