1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/Particle/Mesocrystal.cpp
//! @brief Implements class Mesocrystal.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/Particle/Mesocrystal.h"
#include "Base/Type/Span.h"
#include "Base/Util/Assert.h"
#include "Sample/Lattice/ISelectionRule.h"
#include "Sample/Lattice/Lattice3D.h"
#include "Sample/Particle/Crystal.h"
#include "Sample/Particle/IFormfactor.h"
#include "Sample/Particle/Particle.h"
#include "Sample/Scattering/Rotations.h"
#include <algorithm>
Mesocrystal::Mesocrystal(Crystal* crystal, IFormfactor* formfactor)
: m_crystal(crystal)
, m_meso_formfactor(formfactor)
{
}
Mesocrystal::Mesocrystal(const Crystal& crystal, const IFormfactor& formfactor)
: Mesocrystal(crystal.clone(), formfactor.clone())
{
}
Mesocrystal::~Mesocrystal() = default;
Mesocrystal* Mesocrystal::clone() const
{
auto* result = new Mesocrystal(m_crystal->clone(), m_meso_formfactor->clone());
result->setAbundance(m_abundance);
if (rotation())
result->rotate(*rotation());
result->translate(particlePosition());
return result;
}
std::vector<const INode*> Mesocrystal::nodeChildren() const
{
return std::vector<const INode*>()
<< IParticle::nodeChildren() << m_crystal << m_meso_formfactor;
}
const Crystal& Mesocrystal::particleStructure() const
{
ASSERT(m_crystal);
return *m_crystal;
}
Span Mesocrystal::zSpan() const
{
return m_meso_formfactor->spanZ(rotation()) + particlePosition().z();
}
std::vector<R3> Mesocrystal::calcBasisPositions() const
{
std::vector<I3> basisIndexes = calcBasisIndexes().basisIndexes;
std::vector<R3> result(basisIndexes.size());
size_t counter = 0;
for (const I3& index : basisIndexes)
result[counter++] = index.x() * m_crystal->lattice()->basisVectorA()
+ index.y() * m_crystal->lattice()->basisVectorB()
+ index.z() * m_crystal->lattice()->basisVectorC();
return result;
}
ShapeIndexes Mesocrystal::calcBasisIndexes() const
{
const Lattice3D& lattice = *m_crystal->lattice();
R3 shift = m_crystal->basis()->particlePosition();
auto contains = [&](const I3& index) -> bool {
R3 position = index.x() * lattice.basisVectorA() + index.y() * lattice.basisVectorB()
+ index.z() * lattice.basisVectorC();
return m_meso_formfactor->contains(position + shift);
};
// positive and negative boundaries are changeable
struct Limits {
int i_min = 0, i_max = 1;
int j_min = 0, j_max = 1;
int k_min = 0, k_max = 1;
} limits;
// On the first pass we find min and max indices along each axis WITHOUT selection rule
auto check_and_add_particle = [&](int i, int j, int k) {
if (contains(I3(i, j, k))) {
// if boundary particle belongs to the outer shape, extend the boundaries
if (i == limits.i_min)
limits.i_min--;
if (i == limits.i_max)
limits.i_max++;
if (j == limits.j_min)
limits.j_min--;
if (j == limits.j_max)
limits.j_max++;
if (k == limits.k_min)
limits.k_min--;
if (k == limits.k_max)
limits.k_max++;
}
};
auto iterate_i = [&](int j, int k) {
for (int i = 1; i <= limits.i_max; i++)
check_and_add_particle(i, j, k);
for (int i = 0; i >= limits.i_min; i--)
check_and_add_particle(i, j, k);
};
auto iterate_j = [&](int k) {
for (int j = 1; j <= limits.j_max; j++)
iterate_i(j, k);
for (int j = 0; j >= limits.j_min; j--)
iterate_i(j, k);
};
auto iterate_k = [&] {
for (int k = 1; k <= limits.k_max; k++)
iterate_j(k);
for (int k = 0; k >= limits.k_min; k--)
iterate_j(k);
};
iterate_k();
// min and max indexes belonging to the outer shape
I3 min_index(limits.i_min + 1, limits.j_min + 1, limits.k_min + 1);
I3 max_index(limits.i_max - 1, limits.j_max - 1, limits.k_max - 1);
I3 range = max_index - min_index;
// On the second pass we find indices WITH selection rule
auto contains_shifted = [&](int i, int j, int k) -> bool {
const I3 shifted_index = I3(i, j, k) + min_index;
if (lattice.selectionRule() && !lattice.selectionRule()->coordinateSelected(shifted_index))
return false;
return contains(shifted_index);
};
// reuse to find updated index range WITH selection rule
limits = {range.x(), 0, range.y(), 0, range.z(), 0};
// For each [i,j] point we collect continuous ranges of k indexes and store them as of pairs
// (k_begin, k_end). These ranges will be used to efficiently sum the geometric progression.
std::vector<std::vector<std::vector<std::pair<int, int>>>> k_pairs(
range.x() + 1, std::vector<std::vector<std::pair<int, int>>>(range.y() + 1));
std::vector<I3> basisIndexes;
for (int i = 0; i <= range.x(); i++) {
for (int j = 0; j <= range.y(); j++) {
for (int k = 0; k <= range.z(); k++) {
if (!contains_shifted(i, j, k))
continue;
basisIndexes.push_back(I3(i, j, k) + min_index);
limits.i_min = std::min(limits.i_min, i);
limits.j_min = std::min(limits.j_min, j);
limits.k_min = std::min(limits.k_min, k);
limits.i_max = std::max(limits.i_max, i);
limits.j_max = std::max(limits.j_max, j);
limits.k_max = std::max(limits.k_max, k);
// open pair
if (k == 0 || !contains_shifted(i, j, k - 1))
k_pairs[i][j].push_back(std::make_pair(k, k));
// close pair
if (k == range.z() || !contains_shifted(i, j, k + 1))
k_pairs[i][j].back().second = k;
}
}
}
// min and max indexes belonging to the outer shape with selection rule
const I3 upd_min_index = I3(limits.i_min, limits.j_min, limits.k_min) + min_index;
const I3 upd_max_index = I3(limits.i_max, limits.j_max, limits.k_max) + min_index;
return {upd_min_index, upd_max_index, basisIndexes, k_pairs};
}
|