File: MagneticLayersBuilder.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (179 lines) | stat: -rw-r--r-- 6,521 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sample/StandardSample/MagneticLayersBuilder.cpp
//! @brief    Implements class to build samples with magnetic layers.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sample/StandardSample/MagneticLayersBuilder.h"
#include "Base/Const/Units.h"
#include "Base/Util/Assert.h"
#include "Sample/Aggregate/ParticleLayout.h"
#include "Sample/HardParticle/Sphere.h"
#include "Sample/Interface/Roughness.h"
#include "Sample/Material/MaterialFactoryFuncs.h"
#include "Sample/Multilayer/Layer.h"
#include "Sample/Multilayer/Sample.h"
#include "Sample/Particle/Particle.h"
#include "Sample/Scattering/Rotations.h"
#include <map>

using Units::deg;

namespace {

const double sphere_radius = 5;

} // namespace

//  ************************************************************************************************

Sample* ExemplarySamples::createMagneticSubstrateZeroField()
{
    R3 substr_field(0.0, 0.0, 0.0);
    R3 particle_field(0.1, 0.0, 0.0);
    Material vacuum_material = RefractiveMaterial("Vacuum", 0.0, 0.0);
    Material substrate_material = RefractiveMaterial("Substrate", 7e-6, 2e-8, substr_field);
    Material particle_material = RefractiveMaterial("MagParticle", 6e-4, 2e-8, particle_field);

    ParticleLayout particle_layout;
    R3 position(0.0, 0.0, -10.0);
    Sphere ff_sphere(sphere_radius);
    Particle particle(particle_material, ff_sphere);
    particle.translate(position);
    particle_layout.addParticle(particle);

    Layer vacuum_layer(vacuum_material);
    Layer substrate_layer(substrate_material);
    substrate_layer.addLayout(particle_layout);

    auto* sample = new Sample;
    sample->addLayer(vacuum_layer);
    sample->addLayer(substrate_layer);
    return sample;
}

//  ************************************************************************************************

Sample* ExemplarySamples::createSimpleMagneticLayer()
{
    auto* sample = new Sample;

    R3 layer_field = R3(0.0, 1e8, 0.0);
    Material vacuum_material = MaterialBySLD("Vacuum", 0.0, 0.0);
    Material layer_material = MaterialBySLD("MagLayer", 1e-4, 1e-8, layer_field);
    Material substrate_material = MaterialBySLD("Substrate", 7e-5, 2e-6);

    Layer vacuum_layer(vacuum_material);
    Layer intermediate_layer(layer_material, 10.0); // 10 nm layer thickness
    Layer substrate_layer(substrate_material);

    sample->addLayer(vacuum_layer);
    sample->addLayer(intermediate_layer);
    sample->addLayer(substrate_layer);
    return sample;
}

//  ************************************************************************************************

Sample* ExemplarySamples::createMagneticLayer()
{
    auto* sample = new Sample;

    R3 layer_field = R3(0.0, 0.0, 1e6);
    R3 particle_field(1e6, 0.0, 0.0);
    Material vacuum_material = RefractiveMaterial("Vacuum0", 0.0, 0.0);
    Material layer_material = RefractiveMaterial("Vacuum1", 0.0, 0.0, layer_field);
    Material substrate_material = RefractiveMaterial("Substrate", 7e-6, 2e-8);
    Material particle_material = RefractiveMaterial("MagParticle", 6e-4, 2e-8, particle_field);

    ParticleLayout particle_layout;
    Sphere ff_sphere(sphere_radius);
    Particle particle(particle_material, ff_sphere);
    particle_layout.addParticle(particle);

    Layer vacuum_layer(vacuum_material);
    vacuum_layer.addLayout(particle_layout);
    Layer substrate_layer(substrate_material);

    sample->addLayer(vacuum_layer);
    sample->addLayer(substrate_layer);
    return sample;
}

//  ************************************************************************************************

Sample* ExemplarySamples::createSimpleMagneticRotationWithRoughness(const std::string& roughnessKey)
{
    double sigmaRoughness = 0.;
    std::unique_ptr<TransientModel> transient;

    if (roughnessKey == "Flat") {
        sigmaRoughness = 0.;
        transient = std::make_unique<TanhTransient>();
    } else if (roughnessKey == "Tanh") {
        sigmaRoughness = 2. * Units::angstrom;
        transient = std::make_unique<TanhTransient>();
    } else if (roughnessKey == "Erf") {
        sigmaRoughness = 2. * Units::angstrom;
        transient = std::make_unique<ErfTransient>();
    } else
        ASSERT_NEVER;

    auto* sample = new Sample;

    R3 substr_field = R3(0.0, 1e6, 0.0);
    R3 layer_field = R3(1e6, 1e6, 0.0);
    Material vacuum_material = RefractiveMaterial("Vacuum", 0.0, 0.0);
    Material substrate_material = RefractiveMaterial("Substrate", 7e-6, 2e-8, substr_field);
    Material layer_material = RefractiveMaterial("MagLayer", 6e-4, 2e-8, layer_field);

    SelfAffineFractalModel autocorrelation(sigmaRoughness, 0.7, 25);
    auto roughness = Roughness(&autocorrelation, transient.get());

    Layer vacuum_layer(vacuum_material);
    Layer layer(layer_material, 200 * Units::angstrom, &roughness);
    Layer substrate_layer(substrate_material, &roughness);

    sample->addLayer(vacuum_layer);
    sample->addLayer(layer);
    sample->addLayer(substrate_layer);
    return sample;
}

//  ************************************************************************************************

Sample* ExemplarySamples::createMagneticRotation()
{
    auto* sample = new Sample;

    R3 substr_field = R3(0.0, 1e6, 0.0);
    R3 particle_field(1e6, 0.0, 0.0);
    Material vacuum_material = RefractiveMaterial("Vacuum", 0.0, 0.0);
    Material substrate_material = RefractiveMaterial("Substrate", 7e-6, 2e-8, substr_field);
    Material particle_material = RefractiveMaterial("MagParticle", 6e-4, 2e-8, particle_field);

    ParticleLayout particle_layout;
    R3 position(0.0, 0.0, -10.0);
    Sphere ff_sphere(sphere_radius);
    Particle particle(particle_material, ff_sphere);
    RotationZ rot_z(20 * deg);
    particle.rotate(rot_z);
    particle.translate(position);
    particle_layout.addParticle(particle);

    Layer vacuum_layer(vacuum_material);
    Layer substrate_layer(substrate_material);
    substrate_layer.addLayout(particle_layout);

    sample->addLayer(vacuum_layer);
    sample->addLayer(substrate_layer);
    return sample;
}