1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/StandardSample/ParacrystalBuilder.cpp
//! @brief Implements class ParacrystalBuilder.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/StandardSample/ParacrystalBuilder.h"
#include "Base/Const/Units.h"
#include "Base/Util/Assert.h"
#include "Sample/Aggregate/Interference2DParacrystal.h"
#include "Sample/Aggregate/InterferenceRadialParacrystal.h"
#include "Sample/Aggregate/ParticleLayout.h"
#include "Sample/HardParticle/Cylinder.h"
#include "Sample/Multilayer/Layer.h"
#include "Sample/Multilayer/Sample.h"
#include "Sample/Particle/Particle.h"
#include "Sample/StandardSample/ReferenceMaterials.h"
using Units::deg;
Sample* ExemplarySamples::createRadialParacrystal()
{
const double m_corr_peak_distance(20.0);
const double m_corr_width(7);
const double m_corr_length(1e3);
const double m_cylinder_height(5);
const double m_cylinder_radius(5);
Layer vacuum_layer(refMat::Vacuum);
Layer substrate_layer(refMat::Substrate);
InterferenceRadialParacrystal iff(m_corr_peak_distance, m_corr_length);
Profile1DGauss pdf(m_corr_width);
iff.setProbabilityDistribution(pdf);
Cylinder ff_cylinder(m_cylinder_radius, m_cylinder_height);
Particle particle(refMat::Particle, ff_cylinder);
ParticleLayout particle_layout(particle);
particle_layout.setInterference(iff);
vacuum_layer.addLayout(particle_layout);
auto* result = new Sample;
result->addLayer(vacuum_layer);
result->addLayer(substrate_layer);
return result;
}
// -----------------------------------------------------------------------------
// Basic2DParacrystalBuilder
// -----------------------------------------------------------------------------
Sample* ExemplarySamples::createBasic2DParacrystalWithFTDis(const IProfile2D* pdf2)
{
const Profile2DCauchy pdf1(0.1, 0.2, 0);
Layer vacuum_layer(refMat::Vacuum);
Layer substrate_layer(refMat::Substrate);
Interference2DParacrystal iff(BasicLattice2D(10.0, 20.0, 30.0 * deg, 45.0 * deg), 1000.0,
20.0 * Units::micrometer, 40.0 * Units::micrometer);
iff.setProbabilityDistributions(pdf1, *pdf2);
const Cylinder ff_cylinder(5.0, 5.0);
Particle particle(refMat::Particle, ff_cylinder);
ParticleLayout particle_layout(particle);
particle_layout.setInterference(iff);
vacuum_layer.addLayout(particle_layout);
auto* result = new Sample;
result->setName("Basic2DParacrystal_" + pdf2->className());
result->addLayer(vacuum_layer);
result->addLayer(substrate_layer);
return result;
}
// -----------------------------------------------------------------------------
// HexParacrystalBuilder
// -----------------------------------------------------------------------------
Sample* ExemplarySamples::createHexParacrystal()
{
const double m_peak_distance(20.0);
const double m_corr_length(0.0);
const double m_domain_size_1(20.0 * Units::micrometer);
const double m_domain_size_2(20.0 * Units::micrometer);
const double m_cylinder_height(5);
const double m_cylinder_radius(5);
Layer vacuum_layer(refMat::Vacuum);
Layer substrate_layer(refMat::Substrate);
Interference2DParacrystal iff(HexagonalLattice2D(m_peak_distance, 0.0), m_corr_length,
m_domain_size_1, m_domain_size_2);
iff.setIntegrationOverXi(true);
Profile2DCauchy pdf(1.0, 1.0, 0);
iff.setProbabilityDistributions(pdf, pdf);
Cylinder ff_cylinder(m_cylinder_radius, m_cylinder_height);
Particle cylinder(refMat::Particle, ff_cylinder);
ParticleLayout particle_layout(cylinder);
particle_layout.setInterference(iff);
vacuum_layer.addLayout(particle_layout);
auto* result = new Sample;
result->addLayer(vacuum_layer);
result->addLayer(substrate_layer);
return result;
}
// -----------------------------------------------------------------------------
// RectParacrystalBuilder
// -----------------------------------------------------------------------------
Sample* ExemplarySamples::createRectParacrystal()
{
Layer vacuum_layer(refMat::Vacuum);
Layer substrate_layer(refMat::Substrate);
Interference2DParacrystal iff(SquareLattice2D(10), 0, 0, 0);
iff.setIntegrationOverXi(true);
iff.setDomainSizes(20.0 * Units::micrometer, 20.0 * Units::micrometer);
Profile2DCauchy pdf1(0.5, 2.0, 0);
Profile2DCauchy pdf2(0.5, 2.0, 0);
iff.setProbabilityDistributions(pdf1, pdf2);
Cylinder ff_cylinder(5.0, 5.0);
Particle particle(refMat::Particle, ff_cylinder);
ParticleLayout particle_layout(particle);
particle_layout.setInterference(iff);
vacuum_layer.addLayout(particle_layout);
auto* result = new Sample;
result->addLayer(vacuum_layer);
result->addLayer(substrate_layer);
return result;
}
|